Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2405.19822
Cited By
Improving Object Detector Training on Synthetic Data by Starting With a Strong Baseline Methodology
30 May 2024
Frank Ruis
Alma M. Liezenga
Friso G. Heslinga
Luca Ballan
Thijs A. Eker
Richard J. M. den Hollander
Martin C. van Leeuwen
Judith Dijk
Wyke Huizinga
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improving Object Detector Training on Synthetic Data by Starting With a Strong Baseline Methodology"
6 / 6 papers shown
Title
Intriguing Properties of Vision Transformers
Muzammal Naseer
Kanchana Ranasinghe
Salman Khan
Munawar Hayat
F. Khan
Ming-Hsuan Yang
ViT
248
618
0
21 May 2021
Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation
Qin Wang
Dengxin Dai
Lukas Hoyer
Luc Van Gool
Olga Fink
OOD
MDE
45
138
0
28 Apr 2021
Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation
Golnaz Ghiasi
Yin Cui
A. Srinivas
Rui Qian
Tsung-Yi Lin
E. D. Cubuk
Quoc V. Le
Barret Zoph
ISeg
223
962
0
13 Dec 2020
Bag of Tricks for Image Classification with Convolutional Neural Networks
Tong He
Zhi-Li Zhang
Hang Zhang
Zhongyue Zhang
Junyuan Xie
Mu Li
216
1,391
0
04 Dec 2018
Feature Pyramid Networks for Object Detection
Tsung-Yi Lin
Piotr Dollár
Ross B. Girshick
Kaiming He
Bharath Hariharan
Serge J. Belongie
ObjD
166
21,643
0
09 Dec 2016
You Only Look Once: Unified, Real-Time Object Detection
Joseph Redmon
S. Divvala
Ross B. Girshick
Ali Farhadi
ObjD
281
36,178
0
08 Jun 2015
1