Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2406.01468
Cited By
Understanding Token Probability Encoding in Output Embeddings
3 June 2024
Hakaze Cho
Yoshihiro Sakai
Kenshiro Tanaka
Mariko Kato
Naoya Inoue
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding Token Probability Encoding in Output Embeddings"
5 / 5 papers shown
Title
All Bark and No Bite: Rogue Dimensions in Transformer Language Models Obscure Representational Quality
William Timkey
Marten van Schijndel
213
110
0
09 Sep 2021
The Pile: An 800GB Dataset of Diverse Text for Language Modeling
Leo Gao
Stella Biderman
Sid Black
Laurence Golding
Travis Hoppe
...
Horace He
Anish Thite
Noa Nabeshima
Shawn Presser
Connor Leahy
AIMat
253
1,986
0
31 Dec 2020
Rethinking embedding coupling in pre-trained language models
Hyung Won Chung
Thibault Févry
Henry Tsai
Melvin Johnson
Sebastian Ruder
93
142
0
24 Oct 2020
The large learning rate phase of deep learning: the catapult mechanism
Aitor Lewkowycz
Yasaman Bahri
Ethan Dyer
Jascha Narain Sohl-Dickstein
Guy Gur-Ari
ODL
159
234
0
04 Mar 2020
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
281
2,888
0
15 Sep 2016
1