ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.04268
  4. Cited By
Open-Endedness is Essential for Artificial Superhuman Intelligence

Open-Endedness is Essential for Artificial Superhuman Intelligence

6 June 2024
Edward Hughes
Michael Dennis
Jack Parker-Holder
Feryal M. P. Behbahani
Aditi Mavalankar
Yuge Shi
Tom Schaul
Tim Rocktaschel
    LRM
ArXivPDFHTML

Papers citing "Open-Endedness is Essential for Artificial Superhuman Intelligence"

17 / 17 papers shown
Title
Opening the Scope of Openness in AI
Opening the Scope of Openness in AI
Tamara Paris
AJung Moon
Jin Guo
12
0
0
09 May 2025
Intrinsically-Motivated Humans and Agents in Open-World Exploration
Intrinsically-Motivated Humans and Agents in Open-World Exploration
Aly Lidayan
Yuqing Du
Eliza Kosoy
Maria Rufova
Pieter Abbeel
Alison Gopnik
34
0
0
31 Mar 2025
Measuring In-Context Computation Complexity via Hidden State Prediction
Measuring In-Context Computation Complexity via Hidden State Prediction
Vincent Herrmann
Róbert Csordás
Jürgen Schmidhuber
34
0
0
17 Mar 2025
Research on Superalignment Should Advance Now with Parallel Optimization of Competence and Conformity
HyunJin Kim
Xiaoyuan Yi
Jing Yao
Muhua Huang
Jinyeong Bak
James Evans
Xing Xie
29
0
0
08 Mar 2025
Toward an Evaluation Science for Generative AI Systems
Laura Weidinger
Deb Raji
Hanna M. Wallach
Margaret Mitchell
Angelina Wang
Olawale Salaudeen
Rishi Bommasani
Sayash Kapoor
Deep Ganguli
Sanmi Koyejo
EGVM
ELM
62
3
0
07 Mar 2025
Evolution and The Knightian Blindspot of Machine Learning
Evolution and The Knightian Blindspot of Machine Learning
Joel Lehman
Elliot Meyerson
Tarek El-Gaaly
Kenneth O. Stanley
Tarin Ziyaee
75
1
0
22 Jan 2025
Incentives to Build Houses, Trade Houses, or Trade House Building Skills
  in Simulated Worlds under Various Governing Systems or Institutions:
  Comparing Multi-agent Reinforcement Learning to Generative Agent-based Model
Incentives to Build Houses, Trade Houses, or Trade House Building Skills in Simulated Worlds under Various Governing Systems or Institutions: Comparing Multi-agent Reinforcement Learning to Generative Agent-based Model
Aslan S. Dizaji
63
0
0
21 Nov 2024
BALROG: Benchmarking Agentic LLM and VLM Reasoning On Games
BALROG: Benchmarking Agentic LLM and VLM Reasoning On Games
Davide Paglieri
Bartłomiej Cupiał
Samuel Coward
Ulyana Piterbarg
Maciej Wolczyk
...
Lerrel Pinto
Rob Fergus
Jakob Foerster
Jack Parker-Holder
Tim Rocktaschel
LLMAG
LRM
92
10
0
20 Nov 2024
Towards evaluations-based safety cases for AI scheming
Towards evaluations-based safety cases for AI scheming
Mikita Balesni
Marius Hobbhahn
David Lindner
Alexander Meinke
Tomek Korbak
...
Dan Braun
Bilal Chughtai
Owain Evans
Daniel Kokotajlo
Lucius Bushnaq
ELM
31
9
0
29 Oct 2024
Rainbow Teaming: Open-Ended Generation of Diverse Adversarial Prompts
Rainbow Teaming: Open-Ended Generation of Diverse Adversarial Prompts
Mikayel Samvelyan
Sharath Chandra Raparthy
Andrei Lupu
Eric Hambro
Aram H. Markosyan
...
Minqi Jiang
Jack Parker-Holder
Jakob Foerster
Tim Rocktaschel
Roberta Raileanu
SyDa
65
61
0
26 Feb 2024
Self-Rewarding Language Models
Self-Rewarding Language Models
Weizhe Yuan
Richard Yuanzhe Pang
Kyunghyun Cho
Xian Li
Sainbayar Sukhbaatar
Jing Xu
Jason Weston
ReLM
SyDa
ALM
LRM
215
291
0
18 Jan 2024
Generative Agents: Interactive Simulacra of Human Behavior
Generative Agents: Interactive Simulacra of Human Behavior
J. Park
Joseph C. O'Brien
Carrie J. Cai
Meredith Ringel Morris
Percy Liang
Michael S. Bernstein
LM&Ro
AI4CE
204
1,701
0
07 Apr 2023
Vision-Language Models as Success Detectors
Vision-Language Models as Success Detectors
Yuqing Du
Ksenia Konyushkova
Misha Denil
A. Raju
Jessica Landon
Felix Hill
Nando de Freitas
Serkan Cabi
MLLM
LRM
82
76
0
13 Mar 2023
MAESTRO: Open-Ended Environment Design for Multi-Agent Reinforcement
  Learning
MAESTRO: Open-Ended Environment Design for Multi-Agent Reinforcement Learning
Mikayel Samvelyan
Akbir Khan
Michael Dennis
Minqi Jiang
Jack Parker-Holder
Jakob N. Foerster
Roberta Raileanu
Tim Rocktaschel
37
12
0
06 Mar 2023
Emergent Bartering Behaviour in Multi-Agent Reinforcement Learning
Emergent Bartering Behaviour in Multi-Agent Reinforcement Learning
Michael Bradley Johanson
Edward Hughes
Finbarr Timbers
Joel Z. Leibo
11
22
0
13 May 2022
Training language models to follow instructions with human feedback
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLM
ALM
301
11,730
0
04 Mar 2022
Fine-Tuning Language Models from Human Preferences
Fine-Tuning Language Models from Human Preferences
Daniel M. Ziegler
Nisan Stiennon
Jeff Wu
Tom B. Brown
Alec Radford
Dario Amodei
Paul Christiano
G. Irving
ALM
273
1,561
0
18 Sep 2019
1