ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.05753
  4. Cited By
Grounding Continuous Representations in Geometry: Equivariant Neural Fields

Grounding Continuous Representations in Geometry: Equivariant Neural Fields

9 June 2024
David R. Wessels
David M. Knigge
Samuele Papa
Riccardo Valperga
Sharvaree P. Vadgama
E. Gavves
Erik J. Bekkers
ArXivPDFHTML

Papers citing "Grounding Continuous Representations in Geometry: Equivariant Neural Fields"

12 / 12 papers shown
Title
Geometry aware inference of steady state PDEs using Equivariant Neural Fields representations
Geometry aware inference of steady state PDEs using Equivariant Neural Fields representations
Giovanni Catalani
Michaël Bauerheim
Frédéric Tost
Xavier Bertrand
Joseph Morlier
AI4CE
42
0
0
24 Apr 2025
Flow Matching on Lie Groups
Flow Matching on Lie Groups
Finn M. Sherry
Bart M.N. Smets
49
0
0
01 Apr 2025
ARC: Anchored Representation Clouds for High-Resolution INR Classification
ARC: Anchored Representation Clouds for High-Resolution INR Classification
Joost Luijmes
Alexander Gielisse
Roman Knyazhitskiy
J. C. V. Gemert
33
1
0
19 Mar 2025
Erwin: A Tree-based Hierarchical Transformer for Large-scale Physical Systems
Erwin: A Tree-based Hierarchical Transformer for Large-scale Physical Systems
Maksim Zhdanov
Max Welling
Jan Willem van de Meent
AI4CE
36
1
0
24 Feb 2025
The NGT200 Dataset: Geometric Multi-View Isolated Sign Recognition
The NGT200 Dataset: Geometric Multi-View Isolated Sign Recognition
Oline Ranum
David R. Wessels
Gomer Otterspeer
Erik J. Bekkers
Floris Roelofsen
Jari I. Andersen
SLR
21
0
0
03 Sep 2024
Space-Time Continuous PDE Forecasting using Equivariant Neural Fields
Space-Time Continuous PDE Forecasting using Equivariant Neural Fields
David M. Knigge
David R. Wessels
Riccardo Valperga
Samuele Papa
J. Sonke
E. Gavves
Erik J. Bekkers
AI4CE
22
3
0
10 Jun 2024
An Exploration of Conditioning Methods in Graph Neural Networks
An Exploration of Conditioning Methods in Graph Neural Networks
Yeskendir Koishekenov
Erik J. Bekkers
AI4CE
24
3
0
03 May 2023
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
Gabriele Corso
Hannes Stärk
Bowen Jing
Regina Barzilay
Tommi Jaakkola
DiffM
130
399
0
04 Oct 2022
From data to functa: Your data point is a function and you can treat it
  like one
From data to functa: Your data point is a function and you can treat it like one
Emilien Dupont
Hyunjik Kim
S. M. Ali Eslami
Danilo Jimenez Rezende
Dan Rosenbaum
TDI
3DPC
154
136
0
28 Jan 2022
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
161
1,095
0
27 Apr 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
183
1,218
0
08 Jan 2021
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
234
11,568
0
09 Mar 2017
1