Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2406.11331
Cited By
They're All Doctors: Synthesizing Diverse Counterfactuals to Mitigate Associative Bias
17 June 2024
Salma Abdel Magid
Jui-Hsien Wang
Kushal Kafle
Hanspeter Pfister
Re-assign community
ArXiv
PDF
HTML
Papers citing
"They're All Doctors: Synthesizing Diverse Counterfactuals to Mitigate Associative Bias"
9 / 9 papers shown
Title
Is What You Ask For What You Get? Investigating Concept Associations in Text-to-Image Models
Salma Abdel Magid
Weiwei Pan
Simon Warchol
Grace Guo
Junsik Kim
Mahia Rahman
Hanspeter Pfister
84
0
0
06 Oct 2024
Adversarial Diffusion Distillation
Axel Sauer
Dominik Lorenz
A. Blattmann
Robin Rombach
138
329
0
28 Nov 2023
Evaluating the Fairness of Discriminative Foundation Models in Computer Vision
Junaid Ali
Matthäus Kleindessner
F. Wenzel
Kailash Budhathoki
V. Cevher
Chris Russell
VLM
60
10
0
18 Oct 2023
What does a platypus look like? Generating customized prompts for zero-shot image classification
Sarah M Pratt
Ian Covert
Rosanne Liu
Ali Farhadi
VLM
119
212
0
07 Sep 2022
BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
Junnan Li
Dongxu Li
Caiming Xiong
S. Hoi
MLLM
BDL
VLM
CLIP
388
4,110
0
28 Jan 2022
Are Gender-Neutral Queries Really Gender-Neutral? Mitigating Gender Bias in Image Search
Jialu Wang
Yang Liu
X. Wang
FaML
155
95
0
12 Sep 2021
CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval
Huaishao Luo
Lei Ji
Ming Zhong
Yang Chen
Wen Lei
Nan Duan
Tianrui Li
CLIP
VLM
309
778
0
18 Apr 2021
Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
Chao Jia
Yinfei Yang
Ye Xia
Yi-Ting Chen
Zarana Parekh
Hieu H. Pham
Quoc V. Le
Yun-hsuan Sung
Zhen Li
Tom Duerig
VLM
CLIP
293
3,683
0
11 Feb 2021
Are We Modeling the Task or the Annotator? An Investigation of Annotator Bias in Natural Language Understanding Datasets
Mor Geva
Yoav Goldberg
Jonathan Berant
235
319
0
21 Aug 2019
1