ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2408.16429
  4. Cited By
Gradient-free variational learning with conditional mixture networks
v1v2 (latest)

Gradient-free variational learning with conditional mixture networks

29 August 2024
Conor Heins
Hao Wu
Dimitrije Marković
Alexander Tschantz
Jeff Beck
Christopher L. Buckley
    BDL
ArXiv (abs)PDFHTML

Papers citing "Gradient-free variational learning with conditional mixture networks"

25 / 25 papers shown
Title
AXIOM: Learning to Play Games in Minutes with Expanding Object-Centric Models
AXIOM: Learning to Play Games in Minutes with Expanding Object-Centric Models
Conor Heins
Toon Van de Maele
Alexander Tschantz
Hampus Linander
Dimitrije Marković
...
Magnus T. Koudahl
Marco Perin
Karl J. Friston
Tim Verbelen
Christopher L. Buckley
OCL
227
2
0
30 May 2025
Bayesian Predictive Coding
Bayesian Predictive Coding
Alexander Tschantz
Magnus T. Koudahl
Hampus Linander
Lancelot Da Costa
Conor Heins
Jeff Beck
Christopher L. Buckley
BDL
303
1
0
31 Mar 2025
Navigation under uncertainty: Trajectory prediction and occlusion
  reasoning with switching dynamical systems
Navigation under uncertainty: Trajectory prediction and occlusion reasoning with switching dynamical systems
Ran Wei
Joseph Lee
Shohei Wakayama
Alexander Tschantz
Conor Heins
...
Mahault Albarracin
Miguel de Prado
Petter Horling
Peter Winzell
Renjith Rajagopal
254
4
0
14 Oct 2024
Laplace Redux -- Effortless Bayesian Deep Learning
Laplace Redux -- Effortless Bayesian Deep LearningNeural Information Processing Systems (NeurIPS), 2021
Erik A. Daxberger
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Matthias Bauer
Philipp Hennig
BDLUQCV
659
384
0
28 Jun 2021
What Are Bayesian Neural Network Posteriors Really Like?
What Are Bayesian Neural Network Posteriors Really Like?International Conference on Machine Learning (ICML), 2021
Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
A. Wilson
UQCVBDL
292
434
0
29 Apr 2021
Ultimate Pólya Gamma Samplers -- Efficient MCMC for possibly
  imbalanced binary and categorical data
Ultimate Pólya Gamma Samplers -- Efficient MCMC for possibly imbalanced binary and categorical dataJournal of the American Statistical Association (JASA), 2020
Gregor Zens
Sylvia Fruhwirth-Schnatter
Helga Wagner
SyDa
386
16
0
13 Nov 2020
AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed
  Gradients
AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients
Juntang Zhuang
Tommy M. Tang
Yifan Ding
S. Tatikonda
Nicha Dvornek
X. Papademetris
James S. Duncan
ODL
712
595
0
15 Oct 2020
Probabilistic Transformers
Probabilistic Transformers
J. Movellan
Prasad Gabbur
152
2
0
15 Oct 2020
Scaling Hamiltonian Monte Carlo Inference for Bayesian Neural Networks
  with Symmetric Splitting
Scaling Hamiltonian Monte Carlo Inference for Bayesian Neural Networks with Symmetric Splitting
Adam D. Cobb
Brian Jalaian
BDL
194
82
0
14 Oct 2020
Calibrating Deep Neural Network Classifiers on Out-of-Distribution
  Datasets
Calibrating Deep Neural Network Classifiers on Out-of-Distribution Datasets
Zhihui Shao
Jianyi Yang
Shaolei Ren
OODD
179
11
0
16 Jun 2020
Data Augementation with Polya Inverse Gamma
Data Augementation with Polya Inverse Gamma
Jingyu He
Nicholas G. Polson
Jianeng Xu
257
5
0
29 May 2019
Conditionally conjugate mean-field variational Bayes for logistic models
Conditionally conjugate mean-field variational Bayes for logistic models
Daniele Durante
T. Rigon
189
44
0
19 Nov 2017
Deep Gaussian Mixture Models
Deep Gaussian Mixture Models
C. Viroli
Geoffrey J. McLachlan
BDL
71
136
0
18 Nov 2017
On Calibration of Modern Neural Networks
On Calibration of Modern Neural NetworksInternational Conference on Machine Learning (ICML), 2017
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
1.3K
6,792
0
14 Jun 2017
Composing graphical models with neural networks for structured
  representations and fast inference
Composing graphical models with neural networks for structured representations and fast inference
Matthew J. Johnson
David Duvenaud
Alexander B. Wiltschko
S. R. Datta
Ryan P. Adams
BDLOCL
467
501
0
20 Mar 2016
A Universal Approximation Theorem for Mixture of Experts Models
A Universal Approximation Theorem for Mixture of Experts Models
Hien Nguyen
Luke R. Lloyd‐Jones
Geoffrey J. McLachlan
156
45
0
11 Feb 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
1.4K
5,257
0
04 Jan 2016
Practical Bayesian model evaluation using leave-one-out cross-validation
  and WAIC
Practical Bayesian model evaluation using leave-one-out cross-validation and WAICStatistics and computing (Stat. Comput.), 2015
Aki Vehtari
Andrew Gelman
Jonah Gabry
365
4,504
0
16 Jul 2015
Dependent Multinomial Models Made Easy: Stick Breaking with the
  Pólya-Gamma Augmentation
Dependent Multinomial Models Made Easy: Stick Breaking with the Pólya-Gamma Augmentation
Scott W. Linderman
Matthew J. Johnson
Ryan P. Adams
159
103
0
18 Jun 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural
  Networks
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCVBDL
370
989
0
18 Feb 2015
Black Box Variational Inference
Black Box Variational InferenceInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2013
Rajesh Ranganath
S. Gerrish
David M. Blei
DRLBDL
501
1,210
0
31 Dec 2013
Learning Factored Representations in a Deep Mixture of Experts
Learning Factored Representations in a Deep Mixture of ExpertsInternational Conference on Learning Representations (ICLR), 2013
David Eigen
MarcÁurelio Ranzato
Ilya Sutskever
MoE
404
441
0
16 Dec 2013
Bayesian Hierarchical Mixtures of Experts
Bayesian Hierarchical Mixtures of ExpertsConference on Uncertainty in Artificial Intelligence (UAI), 2002
Charles M. Bishop
M. Svensén
176
169
0
19 Oct 2012
Stochastic Variational Inference
Stochastic Variational InferenceJournal of machine learning research (JMLR), 2012
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
588
2,741
0
29 Jun 2012
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte CarloJournal of machine learning research (JMLR), 2011
Matthew D. Hoffman
Andrew Gelman
410
4,741
0
18 Nov 2011
1