ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.01316
  4. Cited By
Fast Summation of Radial Kernels via QMC Slicing
v1v2 (latest)

Fast Summation of Radial Kernels via QMC Slicing

International Conference on Learning Representations (ICLR), 2024
2 October 2024
Johannes Hertrich
Tim Jahn
Michael Quellmalz
ArXiv (abs)PDFHTML

Papers citing "Fast Summation of Radial Kernels via QMC Slicing"

28 / 28 papers shown
Slicing Wasserstein Over Wasserstein Via Functional Optimal Transport
Slicing Wasserstein Over Wasserstein Via Functional Optimal Transport
Moritz Piening
Robert Beinert
109
0
0
26 Sep 2025
A Novel Sliced Fused Gromov-Wasserstein Distance
A Novel Sliced Fused Gromov-Wasserstein Distance
Moritz Piening
Robert Beinert
242
2
0
04 Aug 2025
Slicing the Gaussian Mixture Wasserstein Distance
Slicing the Gaussian Mixture Wasserstein Distance
Moritz Piening
Robert Beinert
247
3
0
11 Apr 2025
Smoothed Distance Kernels for MMDs and Applications in Wasserstein Gradient Flows
Smoothed Distance Kernels for MMDs and Applications in Wasserstein Gradient Flows
Nicolaj Rux
Michael Quellmalz
Gabriele Steidl
303
0
0
10 Apr 2025
Randomized Quasi-Monte Carlo Features for Kernel Approximation
Randomized Quasi-Monte Carlo Features for Kernel Approximation
Yuanmin Huang
Zhen Huang
313
0
0
08 Mar 2025
Generative Feature Training of Thin 2-Layer Networks
Generative Feature Training of Thin 2-Layer Networks
J. Hertrich
Sebastian Neumayer
GAN
423
2
0
11 Nov 2024
(De)-regularized Maximum Mean Discrepancy Gradient Flow
(De)-regularized Maximum Mean Discrepancy Gradient Flow
Zonghao Chen
Aratrika Mustafi
Pierre Glaser
Anna Korba
Arthur Gretton
Bharath K. Sriperumbudur
173
10
0
23 Sep 2024
On the design of scalable, high-precision spherical-radial Fourier
  features
On the design of scalable, high-precision spherical-radial Fourier features
Ayoub Belhadji
Qianyu Julie Zhu
Youssef Marzouk
1.1K
1
0
23 Aug 2024
Deep MMD Gradient Flow without adversarial training
Deep MMD Gradient Flow without adversarial training
Alexandre Galashov
Valentin De Bortoli
Arthur Gretton
DiffM
233
10
0
10 May 2024
Fast Kernel Summation in High Dimensions via Slicing and Fourier
  Transforms
Fast Kernel Summation in High Dimensions via Slicing and Fourier TransformsSIAM Journal on Mathematics of Data Science (SIMODS), 2024
Johannes Hertrich
373
9
0
16 Jan 2024
Momentum Particle Maximum Likelihood
Momentum Particle Maximum Likelihood
Jen Ning Lim
Juan Kuntz
Samuel Power
A. M. Johansen
250
12
0
12 Dec 2023
Posterior Sampling Based on Gradient Flows of the MMD with Negative
  Distance Kernel
Posterior Sampling Based on Gradient Flows of the MMD with Negative Distance KernelInternational Conference on Learning Representations (ICLR), 2023
Paul Hagemann
J. Hertrich
Fabian Altekrüger
Robert Beinert
Jannis Chemseddine
Gabriele Steidl
379
29
0
04 Oct 2023
Quasi-Monte Carlo for 3D Sliced Wasserstein
Quasi-Monte Carlo for 3D Sliced WassersteinInternational Conference on Learning Representations (ICLR), 2023
Khai Nguyen
Nicola Bariletto
Nhat Ho
OT3DPC
284
24
0
21 Sep 2023
Generative Sliced MMD Flows with Riesz Kernels
Generative Sliced MMD Flows with Riesz KernelsInternational Conference on Learning Representations (ICLR), 2023
J. Hertrich
Christian Wald
Fabian Altekrüger
Paul Hagemann
310
35
0
19 May 2023
Equispaced Fourier representations for efficient Gaussian process
  regression from a billion data points
Equispaced Fourier representations for efficient Gaussian process regression from a billion data points
P. Greengard
M. Rachh
A. Barnett
293
14
0
18 Oct 2022
The Fast Kernel Transform
The Fast Kernel TransformInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2021
J. Ryan
Sebastian Ament
Daniel Schwalbe-Koda
Anil Damle
121
12
0
08 Jun 2021
Generalization Bounds for Sparse Random Feature Expansions
Generalization Bounds for Sparse Random Feature ExpansionsApplied and Computational Harmonic Analysis (ACHA), 2021
Abolfazl Hashemi
Hayden Schaeffer
Robert Shi
Ufuk Topcu
Giang Tran
Rachel A. Ward
MLT
350
47
0
04 Mar 2021
cuFINUFFT: a load-balanced GPU library for general-purpose nonuniform
  FFTs
cuFINUFFT: a load-balanced GPU library for general-purpose nonuniform FFTsIEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), 2021
Yu-hsuan Shih
Garrett Wright
Joakim Andén
Johannes P. Blaschke
A. Barnett
222
37
0
16 Feb 2021
Kernel Operations on the GPU, with Autodiff, without Memory Overflows
Kernel Operations on the GPU, with Autodiff, without Memory OverflowsJournal of machine learning research (JMLR), 2020
Benjamin Charlier
Jean Feydy
J. Glaunès
François-David Collin
G. Durif
226
199
0
27 Mar 2020
Maximum Mean Discrepancy Gradient Flow
Maximum Mean Discrepancy Gradient FlowNeural Information Processing Systems (NeurIPS), 2019
Michael Arbel
Anna Korba
Adil Salim
Arthur Gretton
356
181
0
11 Jun 2019
Quadrature-based features for kernel approximation
Quadrature-based features for kernel approximation
Marina Munkhoeva
Yermek Kapushev
Evgeny Burnaev
Ivan Oseledets
278
55
0
11 Feb 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
1.3K
9,994
0
25 Aug 2017
Orthogonal Random Features
Orthogonal Random Features
Felix X. Yu
A. Suresh
K. Choromanski
D. Holtmann-Rice
Sanjiv Kumar
202
235
0
28 Oct 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference AlgorithmNeural Information Processing Systems (NeurIPS), 2016
Qiang Liu
Dilin Wang
BDL
490
1,174
0
16 Aug 2016
On the Error of Random Fourier Features
On the Error of Random Fourier FeaturesConference on Uncertainty in Artificial Intelligence (UAI), 2015
Danica J. Sutherland
J. Schneider
288
206
0
09 Jun 2015
Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels
Quasi-Monte Carlo Feature Maps for Shift-Invariant KernelsJournal of machine learning research (JMLR), 2014
H. Avron
Vikas Sindhwani
Jiyan Yang
Michael W. Mahoney
313
172
0
29 Dec 2014
ASKIT: Approximate Skeletonization Kernel-Independent Treecode in High
  Dimensions
ASKIT: Approximate Skeletonization Kernel-Independent Treecode in High DimensionsSIAM Journal on Scientific Computing (SISC), 2014
William B. March
Bo Xiao
George Biros
286
52
0
01 Oct 2014
A Kernel Method for the Two-Sample Problem
A Kernel Method for the Two-Sample ProblemNeural Information Processing Systems (NeurIPS), 2006
Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alex Smola
1.0K
2,523
0
15 May 2008
1