Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2505.11664
Cited By
A Local Polyak-Lojasiewicz and Descent Lemma of Gradient Descent For Overparametrized Linear Models
16 May 2025
Ziqing Xu
Hancheng Min
Salma Tarmoun
Enrique Mallada
Rene Vidal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Local Polyak-Lojasiewicz and Descent Lemma of Gradient Descent For Overparametrized Linear Models"
24 / 24 papers shown
Title
Gradient descent with adaptive stepsize converges (nearly) linearly under fourth-order growth
Damek Davis
Dmitriy Drusvyatskiy
L. Jiang
21
2
0
29 Sep 2024
Gradient Descent Provably Solves Nonlinear Tomographic Reconstruction
Sara Fridovich-Keil
Fabrizio Valdivia
Gordon Wetzstein
Benjamin Recht
Mahdi Soltanolkotabi
28
4
0
06 Oct 2023
On Feature Learning in Neural Networks with Global Convergence Guarantees
Zhengdao Chen
Eric Vanden-Eijnden
Joan Bruna
MLT
57
13
0
22 Apr 2022
Convergence of gradient descent for learning linear neural networks
Gabin Maxime Nguegnang
Holger Rauhut
Ulrich Terstiege
MLT
30
17
0
04 Aug 2021
Overparameterization of deep ResNet: zero loss and mean-field analysis
Zhiyan Ding
Shi Chen
Qin Li
S. Wright
ODL
65
25
0
30 May 2021
Convergence and Implicit Bias of Gradient Flow on Overparametrized Linear Networks
Hancheng Min
Salma Tarmoun
René Vidal
Enrique Mallada
MLT
21
5
0
13 May 2021
Loss landscapes and optimization in over-parameterized non-linear systems and neural networks
Chaoyue Liu
Libin Zhu
M. Belkin
ODL
41
258
0
29 Feb 2020
Global Convergence of Deep Networks with One Wide Layer Followed by Pyramidal Topology
Quynh N. Nguyen
Marco Mondelli
ODL
AI4CE
31
67
0
18 Feb 2020
Implicit Regularization of Discrete Gradient Dynamics in Linear Neural Networks
Gauthier Gidel
Francis R. Bach
Simon Lacoste-Julien
AI4CE
51
153
0
30 Apr 2019
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
146
1,089
0
18 Feb 2019
Width Provably Matters in Optimization for Deep Linear Neural Networks
S. Du
Wei Hu
55
94
0
24 Jan 2019
On Lazy Training in Differentiable Programming
Lénaïc Chizat
Edouard Oyallon
Francis R. Bach
87
823
0
19 Dec 2018
A Convergence Analysis of Gradient Descent for Deep Linear Neural Networks
Sanjeev Arora
Nadav Cohen
Noah Golowich
Wei Hu
100
284
0
04 Oct 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
151
1,261
0
04 Oct 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
188
3,160
0
20 Jun 2018
Algorithmic Regularization in Learning Deep Homogeneous Models: Layers are Automatically Balanced
S. Du
Wei Hu
Jason D. Lee
MLT
119
239
0
04 Jun 2018
On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport
Lénaïc Chizat
Francis R. Bach
OT
157
731
0
24 May 2018
A Mean Field View of the Landscape of Two-Layers Neural Networks
Song Mei
Andrea Montanari
Phan-Minh Nguyen
MLT
76
855
0
18 Apr 2018
Tensor2Tensor for Neural Machine Translation
Ashish Vaswani
Samy Bengio
E. Brevdo
François Chollet
Aidan Gomez
...
Nal Kalchbrenner
Niki Parmar
Ryan Sepassi
Noam M. Shazeer
Jakob Uszkoreit
81
528
0
16 Mar 2018
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark Schmidt
221
1,208
0
16 Aug 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.4K
192,638
0
10 Dec 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
200
18,534
0
06 Feb 2015
Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
Andrew M. Saxe
James L. McClelland
Surya Ganguli
ODL
128
1,830
0
20 Dec 2013
Spectral Compressed Sensing via Structured Matrix Completion
Yuxin Chen
Yuejie Chi
44
58
0
16 Apr 2013
1