ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.11671
  4. Cited By
Humble your Overconfident Networks: Unlearning Overfitting via Sequential Monte Carlo Tempered Deep Ensembles

Humble your Overconfident Networks: Unlearning Overfitting via Sequential Monte Carlo Tempered Deep Ensembles

16 May 2025
Andrew Millard
Zheng Zhao
Joshua Murphy
Simon Maskell
    UQCVBDL
ArXiv (abs)PDFHTML

Papers citing "Humble your Overconfident Networks: Unlearning Overfitting via Sequential Monte Carlo Tempered Deep Ensembles"

17 / 17 papers shown
Title
Understanding and Improving Early Stopping for Learning with Noisy
  Labels
Understanding and Improving Early Stopping for Learning with Noisy LabelsNeural Information Processing Systems (NeurIPS), 2021
Ying-Long Bai
Erkun Yang
Bo Han
Yanhua Yang
Jiatong Li
Yinian Mao
Gang Niu
Tongliang Liu
NoLa
168
262
0
30 Jun 2021
What Are Bayesian Neural Network Posteriors Really Like?
What Are Bayesian Neural Network Posteriors Really Like?International Conference on Machine Learning (ICML), 2021
Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
A. Wilson
UQCVBDL
276
432
0
29 Apr 2021
Energy-based Out-of-distribution Detection
Energy-based Out-of-distribution Detection
Weitang Liu
Xiaoyun Wang
John Douglas Owens
Shouqing Yang
OODD
891
1,635
0
08 Oct 2020
Stochastic Gradient Langevin Dynamics Algorithms with Adaptive Drifts
Stochastic Gradient Langevin Dynamics Algorithms with Adaptive Drifts
Sehwan Kim
Qifan Song
F. Liang
BDL
104
14
0
20 Sep 2020
A statistical theory of cold posteriors in deep neural networks
A statistical theory of cold posteriors in deep neural networks
Laurence Aitchison
UQCVBDL
232
76
0
13 Aug 2020
A Simple Baseline for Bayesian Uncertainty in Deep Learning
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDLUQCV
599
899
0
07 Feb 2019
Adaptive Tuning Of Hamiltonian Monte Carlo Within Sequential Monte Carlo
Adaptive Tuning Of Hamiltonian Monte Carlo Within Sequential Monte Carlo
Alexander K. Buchholz
Nicolas Chopin
Pierre E. Jacob
186
42
0
23 Aug 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
662
9,890
0
25 Aug 2017
On Calibration of Modern Neural Networks
On Calibration of Modern Neural NetworksInternational Conference on Machine Learning (ICML), 2017
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
1.3K
6,765
0
14 Jun 2017
Bayesian Recurrent Neural Networks
Bayesian Recurrent Neural Networks
Meire Fortunato
Charles Blundell
Oriol Vinyals
BDL
321
200
0
10 Apr 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCVBDL
1.3K
6,640
0
05 Dec 2016
An overview of gradient descent optimization algorithms
An overview of gradient descent optimization algorithms
Sebastian Ruder
ODL
940
6,685
0
15 Sep 2016
LSUN: Construction of a Large-scale Image Dataset using Deep Learning
  with Humans in the Loop
LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop
Feng Yu
Ari Seff
Yinda Zhang
Shuran Song
Thomas Funkhouser
Jianxiong Xiao
332
2,511
0
10 Jun 2015
Stochastic Gradient Hamiltonian Monte Carlo
Stochastic Gradient Hamiltonian Monte CarloInternational Conference on Machine Learning (ICML), 2014
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
385
965
0
17 Feb 2014
Multi-digit Number Recognition from Street View Imagery using Deep
  Convolutional Neural Networks
Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural NetworksInternational Conference on Learning Representations (ICLR), 2013
Ian Goodfellow
Yaroslav Bulatov
Julian Ibarz
Sacha Arnoud
Vinay D. Shet
360
736
0
20 Dec 2013
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
595
3,367
0
09 Jun 2012
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte CarloJournal of machine learning research (JMLR), 2011
Matthew D. Hoffman
Andrew Gelman
394
4,729
0
18 Nov 2011
1