ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.16481
  4. Cited By
Neighbour-Driven Gaussian Process Variational Autoencoders for Scalable Structured Latent Modelling

Neighbour-Driven Gaussian Process Variational Autoencoders for Scalable Structured Latent Modelling

22 May 2025
Xinxing Shi
Xiaoyu Jiang
Mauricio A. Álvarez
    BDL
ArXivPDFHTML

Papers citing "Neighbour-Driven Gaussian Process Variational Autoencoders for Scalable Structured Latent Modelling"

26 / 26 papers shown
Title
Leveraging Locality and Robustness to Achieve Massively Scalable
  Gaussian Process Regression
Leveraging Locality and Robustness to Achieve Massively Scalable Gaussian Process Regression
Robert Allison
Anthony Stephenson
F. Samuel
Edward O. Pyzer-Knapp
UQCV
47
4
0
26 Jun 2023
Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes
Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes
Ba-Hien Tran
Babak Shahbaba
Stephan Mandt
Maurizio Filippone
SyDa
BDL
UQCV
49
6
0
09 Feb 2023
Variational sparse inverse Cholesky approximation for latent Gaussian
  processes via double Kullback-Leibler minimization
Variational sparse inverse Cholesky approximation for latent Gaussian processes via double Kullback-Leibler minimization
JIAN-PENG Cao
Myeongjong Kang
Felix Jimenez
H. Sang
Florian Schäfer
Matthias Katzfuss
57
7
0
30 Jan 2023
Markovian Gaussian Process Variational Autoencoders
Markovian Gaussian Process Variational Autoencoders
Harrison Zhu
Carles Balsells Rodas
Yingzhen Li
BDL
AI4TS
61
16
0
12 Jul 2022
Correlation-based sparse inverse Cholesky factorization for fast
  Gaussian-process inference
Correlation-based sparse inverse Cholesky factorization for fast Gaussian-process inference
Myeong K. Kang
Matthias Katzfuss
41
24
0
29 Dec 2021
Spatio-Temporal Variational Gaussian Processes
Spatio-Temporal Variational Gaussian Processes
Oliver Hamelijnck
William J. Wilkinson
Niki A. Loppi
Arno Solin
Theodoros Damoulas
AI4TS
40
34
0
02 Nov 2021
Sparse within Sparse Gaussian Processes using Neighbor Information
Sparse within Sparse Gaussian Processes using Neighbor Information
Gia-Lac Tran
Dimitrios Milios
Pietro Michiardi
Maurizio Filippone
14
16
0
10 Nov 2020
Scalable Gaussian Process Variational Autoencoders
Scalable Gaussian Process Variational Autoencoders
Metod Jazbec
Matthew Ashman
Vincent Fortuin
Michael Pearce
Stephan Mandt
Gunnar Rätsch
DRL
BDL
45
28
0
26 Oct 2020
Sparse Gaussian Process Variational Autoencoders
Sparse Gaussian Process Variational Autoencoders
Matthew Ashman
Jonathan So
Will Tebbutt
Vincent Fortuin
Michael Pearce
Richard Turner
73
35
0
20 Oct 2020
Fast Variational Learning in State-Space Gaussian Process Models
Fast Variational Learning in State-Space Gaussian Process Models
Paul E. Chang
William J. Wilkinson
Mohammad Emtiyaz Khan
Arno Solin
BDL
21
24
0
09 Jul 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
218
10,591
0
17 Feb 2020
Doubly Sparse Variational Gaussian Processes
Doubly Sparse Variational Gaussian Processes
Vincent Adam
Stefanos Eleftheriadis
N. Durrande
A. Artemev
J. Hensman
39
25
0
15 Jan 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
274
42,038
0
03 Dec 2019
GP-VAE: Deep Probabilistic Time Series Imputation
GP-VAE: Deep Probabilistic Time Series Imputation
Vincent Fortuin
Dmitry Baranchuk
Gunnar Rätsch
Stephan Mandt
BDL
AI4TS
46
247
0
09 Jul 2019
Generating Diverse High-Fidelity Images with VQ-VAE-2
Generating Diverse High-Fidelity Images with VQ-VAE-2
Ali Razavi
Aaron van den Oord
Oriol Vinyals
DRL
BDL
105
1,788
0
02 Jun 2019
Gaussian Process Prior Variational Autoencoders
Gaussian Process Prior Variational Autoencoders
F. P. Casale
Adrian Dalca
Luca Saglietti
Jennifer Listgarten
Nicolò Fusi
BDL
CML
45
135
0
28 Oct 2018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU
  Acceleration
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
68
1,088
0
28 Sep 2018
Handling Incomplete Heterogeneous Data using VAEs
Handling Incomplete Heterogeneous Data using VAEs
A. Nazábal
Pablo Martínez Olmos
Zoubin Ghahramani
Isabel Valera
42
345
0
10 Jul 2018
Disentangling by Factorising
Disentangling by Factorising
Hyunjik Kim
A. Mnih
CoGe
OOD
44
1,336
0
16 Feb 2018
A general framework for Vecchia approximations of Gaussian processes
A general framework for Vecchia approximations of Gaussian processes
Matthias Katzfuss
J. Guinness
36
249
0
21 Aug 2017
Billion-scale similarity search with GPUs
Billion-scale similarity search with GPUs
Jeff Johnson
Matthijs Douze
Hervé Jégou
175
3,696
0
28 Feb 2017
Ladder Variational Autoencoders
Ladder Variational Autoencoders
C. Sønderby
T. Raiko
Lars Maaløe
Søren Kaae Sønderby
Ole Winther
BDL
DRL
77
909
0
06 Feb 2016
Deep Kalman Filters
Deep Kalman Filters
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
AI4TS
56
372
0
16 Nov 2015
MCMC for Variationally Sparse Gaussian Processes
MCMC for Variationally Sparse Gaussian Processes
J. Hensman
A. G. Matthews
Maurizio Filippone
Zoubin Ghahramani
49
141
0
12 Jun 2015
Stochastic Gradient Hamiltonian Monte Carlo
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
79
906
0
17 Feb 2014
Gaussian Processes for Big Data
Gaussian Processes for Big Data
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
83
1,226
0
26 Sep 2013
1