Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2505.18909
Cited By
On the Role of Label Noise in the Feature Learning Process
25 May 2025
Andi Han
Wei Huang
Zhanpeng Zhou
Gang Niu
Wuyang Chen
Junchi Yan
Akiko Takeda
Taiji Suzuki
NoLa
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Role of Label Noise in the Feature Learning Process"
46 / 46 papers shown
Title
CCS: Controllable and Constrained Sampling with Diffusion Models via Initial Noise Perturbation
Bowen Song
Zecheng Zhang
Zhaoxu Luo
Jason Hu
Wei Yuan
Jing Jia
Zhengxu Tang
Guanyang Wang
Liyue Shen
DiffM
45
3
0
07 Feb 2025
On the Comparison between Multi-modal and Single-modal Contrastive Learning
Wei Huang
Andi Han
Yongqiang Chen
Yuan Cao
Zhiqiang Xu
Taiji Suzuki
24
6
0
05 Nov 2024
Mixed Dynamics In Linear Networks: Unifying the Lazy and Active Regimes
Zhenfeng Tu
Santiago Aranguri
Arthur Jacot
40
10
0
27 May 2024
Why Does Sharpness-Aware Minimization Generalize Better Than SGD?
Zixiang Chen
Junkai Zhang
Yiwen Kou
Xiangning Chen
Cho-Jui Hsieh
Quanquan Gu
69
15
0
11 Oct 2023
Benign Overfitting and Grokking in ReLU Networks for XOR Cluster Data
Zhiwei Xu
Yutong Wang
Spencer Frei
Gal Vardi
Wei Hu
MLT
56
27
0
04 Oct 2023
Benign Overfitting in Two-Layer ReLU Convolutional Neural Networks for XOR Data
Xuran Meng
Difan Zou
Yuan Cao
MLT
76
9
0
03 Oct 2023
Regularly Truncated M-estimators for Learning with Noisy Labels
Xiaobo Xia
Pengqian Lu
Chen Gong
Bo Han
Jun-chen Yu
Jun Yu
Tongliang Liu
NoLa
52
11
0
02 Sep 2023
Graph Neural Networks Provably Benefit from Structural Information: A Feature Learning Perspective
Wei Huang
Yuanbin Cao
Hong Wang
Xin Cao
Taiji Suzuki
MLT
58
8
0
24 Jun 2023
On Emergence of Clean-Priority Learning in Early Stopped Neural Networks
Chaoyue Liu
Amirhesam Abedsoltan
M. Belkin
NoLa
45
5
0
05 Jun 2023
Label-Retrieval-Augmented Diffusion Models for Learning from Noisy Labels
Jian Chen
Ruiyi Zhang
Tong Yu
Rohan Sharma
Zhiqiang Xu
Tong Sun
Changyou Chen
DiffM
59
19
0
31 May 2023
Understanding and Improving Feature Learning for Out-of-Distribution Generalization
Yongqiang Chen
Wei Huang
Kaiwen Zhou
Yatao Bian
Bo Han
James Cheng
MLT
OOD
OODD
34
27
0
22 Apr 2023
The Benefits of Mixup for Feature Learning
Difan Zou
Yuan Cao
Yuan-Fang Li
Quanquan Gu
MLT
16
20
0
15 Mar 2023
Benign Overfitting for Two-layer ReLU Convolutional Neural Networks
Yiwen Kou
Zi-Yuan Chen
Yuanzhou Chen
Quanquan Gu
MLT
60
16
0
07 Mar 2023
A Theoretical Understanding of Shallow Vision Transformers: Learning, Generalization, and Sample Complexity
Hongkang Li
Ming Wang
Sijia Liu
Pin-Yu Chen
ViT
MLT
62
59
0
12 Feb 2023
Provably Learning Diverse Features in Multi-View Data with Midpoint Mixup
Muthuraman Chidambaram
Xiang Wang
Chenwei Wu
Rong Ge
MLT
44
9
0
24 Oct 2022
On Feature Learning in the Presence of Spurious Correlations
Pavel Izmailov
Polina Kirichenko
Nate Gruver
A. Wilson
66
126
0
20 Oct 2022
Vision Transformers provably learn spatial structure
Samy Jelassi
Michael E. Sander
Yuan-Fang Li
ViT
MLT
44
78
0
13 Oct 2022
Towards understanding how momentum improves generalization in deep learning
Samy Jelassi
Yuanzhi Li
ODL
MLT
AI4CE
45
35
0
13 Jul 2022
Neural Networks can Learn Representations with Gradient Descent
Alexandru Damian
Jason D. Lee
Mahdi Soltanolkotabi
SSL
MLT
74
115
0
30 Jun 2022
Benign Overfitting in Two-layer Convolutional Neural Networks
Yuan Cao
Zixiang Chen
M. Belkin
Quanquan Gu
MLT
41
88
0
14 Feb 2022
Benign Overfitting without Linearity: Neural Network Classifiers Trained by Gradient Descent for Noisy Linear Data
Spencer Frei
Niladri S. Chatterji
Peter L. Bartlett
MLT
51
72
0
11 Feb 2022
Salient ImageNet: How to discover spurious features in Deep Learning?
Sahil Singla
Soheil Feizi
AAML
VLM
47
117
0
08 Oct 2021
Understanding the Generalization of Adam in Learning Neural Networks with Proper Regularization
Difan Zou
Yuan Cao
Yuanzhi Li
Quanquan Gu
MLT
AI4CE
77
41
0
25 Aug 2021
Understanding and Improving Early Stopping for Learning with Noisy Labels
Ying-Long Bai
Erkun Yang
Bo Han
Yanhua Yang
Jiatong Li
Yinian Mao
Gang Niu
Tongliang Liu
NoLa
33
216
0
30 Jun 2021
Provable Generalization of SGD-trained Neural Networks of Any Width in the Presence of Adversarial Label Noise
Spencer Frei
Yuan Cao
Quanquan Gu
FedML
MLT
81
21
0
04 Jan 2021
Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
FedML
100
362
0
17 Dec 2020
Early-Learning Regularization Prevents Memorization of Noisy Labels
Sheng Liu
Jonathan Niles-Weed
N. Razavian
C. Fernandez‐Granda
NoLa
64
561
0
30 Jun 2020
The Surprising Simplicity of the Early-Time Learning Dynamics of Neural Networks
Wei Hu
Lechao Xiao
Ben Adlam
Jeffrey Pennington
36
63
0
25 Jun 2020
When Do Neural Networks Outperform Kernel Methods?
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
74
188
0
24 Jun 2020
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
59
149
0
20 May 2020
An Investigation of Why Overparameterization Exacerbates Spurious Correlations
Shiori Sagawa
Aditi Raghunathan
Pang Wei Koh
Percy Liang
172
375
0
09 May 2020
Towards Explaining the Regularization Effect of Initial Large Learning Rate in Training Neural Networks
Yuanzhi Li
Colin Wei
Tengyu Ma
32
295
0
10 Jul 2019
Kernel and Rich Regimes in Overparametrized Models
Blake E. Woodworth
Suriya Gunasekar
Pedro H. P. Savarese
E. Moroshko
Itay Golan
Jason D. Lee
Daniel Soudry
Nathan Srebro
61
358
0
13 Jun 2019
SGD on Neural Networks Learns Functions of Increasing Complexity
Preetum Nakkiran
Gal Kaplun
Dimitris Kalimeris
Tristan Yang
Benjamin L. Edelman
Fred Zhang
Boaz Barak
MLT
124
242
0
28 May 2019
Gradient Descent with Early Stopping is Provably Robust to Label Noise for Overparameterized Neural Networks
Mingchen Li
Mahdi Soltanolkotabi
Samet Oymak
NoLa
91
352
0
27 Mar 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
108
966
0
24 Jan 2019
How does Disagreement Help Generalization against Label Corruption?
Xingrui Yu
Bo Han
Jiangchao Yao
Gang Niu
Ivor W. Tsang
Masashi Sugiyama
NoLa
37
778
0
14 Jan 2019
On Lazy Training in Differentiable Programming
Lénaïc Chizat
Edouard Oyallon
Francis R. Bach
82
823
0
19 Dec 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
159
3,160
0
20 Jun 2018
Dimensionality-Driven Learning with Noisy Labels
Xingjun Ma
Yisen Wang
Michael E. Houle
Shuo Zhou
S. Erfani
Shutao Xia
S. Wijewickrema
James Bailey
NoLa
55
429
0
07 Jun 2018
Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
Bo Han
Quanming Yao
Xingrui Yu
Gang Niu
Miao Xu
Weihua Hu
Ivor Tsang
Masashi Sugiyama
NoLa
82
2,051
0
18 Apr 2018
Joint Optimization Framework for Learning with Noisy Labels
Daiki Tanaka
Daiki Ikami
T. Yamasaki
Kiyoharu Aizawa
NoLa
58
708
0
30 Mar 2018
A Closer Look at Memorization in Deep Networks
Devansh Arpit
Stanislaw Jastrzebski
Nicolas Ballas
David M. Krueger
Emmanuel Bengio
...
Tegan Maharaj
Asja Fischer
Aaron Courville
Yoshua Bengio
Simon Lacoste-Julien
TDI
95
1,801
0
16 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
452
21,459
0
22 May 2017
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
Giorgio Patrini
A. Rozza
A. Menon
Richard Nock
Zhuang Li
NoLa
83
1,444
0
13 Sep 2016
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
860
99,991
0
04 Sep 2014
1