Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1103.4296
Cited By
v1
v2 (latest)
Randomized Smoothing for Stochastic Optimization
SIAM Journal on Optimization (SIOPT), 2011
22 March 2011
John C. Duchi
Peter L. Bartlett
Martin J. Wainwright
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Randomized Smoothing for Stochastic Optimization"
50 / 137 papers shown
Title
Stable Coresets via Posterior Sampling: Aligning Induced and Full Loss Landscapes
Wei-Kai Chang
Rajiv Khanna
173
0
0
21 Nov 2025
LOTION: Smoothing the Optimization Landscape for Quantized Training
Mujin Kwun
Depen Morwani
Chloe Huangyuan Su
Stephanie Gil
Nikhil Anand
Sham Kakade
MQ
169
1
0
09 Oct 2025
Flatness-Aware Stochastic Gradient Langevin Dynamics
Stefano Bruno
Youngsik Hwang
Jaehyeon An
Sotirios Sabanis
Dong-Young Lim
140
0
0
02 Oct 2025
Linearly Convergent Algorithms for Nonsmooth Problems with Unknown Smooth Pieces
Zhe Zhang
S. Sra
106
0
0
25 Jul 2025
Direct Fisher Score Estimation for Likelihood Maximization
Sherman Khoo
Yakun Wang
Song Liu
Mark Beaumont
133
0
0
06 Jun 2025
A Randomized Zeroth-Order Hierarchical Framework for Heterogeneous Federated Learning
Yuyang Qiu
Kibaek Kim
Farzad Yousefian
FedML
412
0
0
02 Apr 2025
Constructive approximate transport maps with normalizing flows
Antonio Álvarez-López
Borjan Geshkovski
Domènec Ruiz-Balet
OT
270
0
0
26 Dec 2024
Explicit and Implicit Graduated Optimization in Deep Neural Networks
AAAI Conference on Artificial Intelligence (AAAI), 2024
Naoki Sato
Hideaki Iiduka
148
1
0
16 Dec 2024
Faster Algorithms for User-Level Private Stochastic Convex Optimization
Neural Information Processing Systems (NeurIPS), 2024
Andrew Lowy
Daogao Liu
Hilal Asi
153
1
0
24 Oct 2024
Generalizing Stochastic Smoothing for Differentiation and Gradient Estimation
Felix Petersen
Christian Borgelt
Aashwin Mishra
Stefano Ermon
179
2
0
10 Oct 2024
Improved Sample Complexity for Private Nonsmooth Nonconvex Optimization
Guy Kornowski
Daogao Liu
Kunal Talwar
217
2
0
08 Oct 2024
Improved Sample Complexity of Imitation Learning for Barrier Model Predictive Control
Daniel Pfrommer
Swati Padmanabhan
Kwangjun Ahn
Jack Umenberger
Tobia Marcucci
Zakaria Mhammedi
Ali Jadbabaie
138
0
0
01 Oct 2024
Tight Lower Bounds under Asymmetric High-Order Hölder Smoothness and Uniform Convexity
International Conference on Learning Representations (ICLR), 2024
Site Bai
Brian Bullins
225
2
0
16 Sep 2024
Zeroth-Order Stochastic Mirror Descent Algorithms for Minimax Excess Risk Optimization
Zhihao Gu
Zi Xu
264
1
0
22 Aug 2024
Faster Stochastic Optimization with Arbitrary Delays via Asynchronous Mini-Batching
Amit Attia
Ofir Gaash
Tomer Koren
238
0
0
14 Aug 2024
Private Zeroth-Order Nonsmooth Nonconvex Optimization
Qinzi Zhang
Hoang Tran
Ashok Cutkosky
248
5
0
27 Jun 2024
Closing the Computational-Query Depth Gap in Parallel Stochastic Convex Optimization
A. Jambulapati
Aaron Sidford
Kevin Tian
196
4
0
11 Jun 2024
Demystifying SGD with Doubly Stochastic Gradients
Kyurae Kim
Joohwan Ko
Yian Ma
Jacob R. Gardner
350
2
0
03 Jun 2024
Verifiably Robust Conformal Prediction
Linus Jeary
Tom Kuipers
Mehran Hosseini
Nicola Paoletti
AAML
253
9
0
29 May 2024
Lower Bounds and Optimal Algorithms for Non-Smooth Convex Decentralized Optimization over Time-Varying Networks
D. Kovalev
Ekaterina Borodich
Alexander Gasnikov
Dmitrii Feoktistov
173
2
0
28 May 2024
Adaptive Horizon Actor-Critic for Policy Learning in Contact-Rich Differentiable Simulation
Ignat Georgiev
K. Srinivasan
Jie Xu
Eric Heiden
Animesh Garg
324
20
0
28 May 2024
A New Formulation for Zeroth-Order Optimization of Adversarial EXEmples in Malware Detection
Marco Rando
Christian Scano
Lorenzo Rosasco
Fabio Roli
AAML
188
3
0
23 May 2024
Provably Robust Conformal Prediction with Improved Efficiency
Ge Yan
Yaniv Romano
Tsui-Wei Weng
474
24
0
30 Apr 2024
Revisiting Random Weight Perturbation for Efficiently Improving Generalization
Tao Li
Qinghua Tao
Weihao Yan
Zehao Lei
Yingwen Wu
Kun Fang
Mingzhen He
Xiaolin Huang
AAML
305
10
0
30 Mar 2024
Optimization on a Finer Scale: Bounded Local Subgradient Variation Perspective
Jelena Diakonikolas
Cristóbal Guzmán
825
3
0
24 Mar 2024
Efficient Combinatorial Optimization via Heat Diffusion
Neural Information Processing Systems (NeurIPS), 2024
He Ma
Wenlian Lu
Jianfeng Feng
211
2
0
13 Mar 2024
Model-Free
μ
μ
μ
-Synthesis: A Nonsmooth Optimization Perspective
Darioush Keivan
Xing-ming Guo
Peter M. Seiler
Geir Dullerud
Bin Hu
151
0
0
18 Feb 2024
RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees
Neural Information Processing Systems (NeurIPS), 2024
Xun Xian
Ganghua Wang
Xuan Bi
Jayanth Srinivasa
Jayanth Srinivasa
Mingyi Hong
Jie Ding
WIGM
150
6
0
23 Jan 2024
Transfer Attacks and Defenses for Large Language Models on Coding Tasks
Chi Zhang
Zifan Wang
Ravi Mangal
Matt Fredrikson
Limin Jia
Corina S. Pasareanu
AAML
SILM
156
2
0
22 Nov 2023
Nonsmooth Projection-Free Optimization with Functional Constraints
Kamiar Asgari
Michael J. Neely
164
0
0
18 Nov 2023
Breaking Boundaries: Balancing Performance and Robustness in Deep Wireless Traffic Forecasting
Romain Ilbert
Thai V. Hoang
Zonghua Zhang
Themis Palpanas
OOD
AAML
320
1
0
16 Nov 2023
Using Stochastic Gradient Descent to Smooth Nonconvex Functions: Analysis of Implicit Graduated Optimization with Optimal Noise Scheduling
Naoki Sato
Hideaki Iiduka
312
4
0
15 Nov 2023
User-level Differentially Private Stochastic Convex Optimization: Efficient Algorithms with Optimal Rates
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Hilal Asi
Daogao Liu
209
13
0
07 Nov 2023
Compression with Exact Error Distribution for Federated Learning
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Mahmoud Hegazy
Rémi Leluc
Cheuk Ting Li
Hadrien Hendrikx
FedML
174
17
0
31 Oct 2023
DPZero: Private Fine-Tuning of Language Models without Backpropagation
Liang Zhang
Bingcong Li
K. K. Thekumparampil
Sewoong Oh
Niao He
369
20
0
14 Oct 2023
Zero Grads: Learning Local Surrogate Losses for Non-Differentiable Graphics
ACM Transactions on Graphics (TOG), 2023
Michael Fischer
Tobias Ritschel
226
7
0
10 Aug 2023
Fighting Uncertainty with Gradients: Offline Reinforcement Learning via Diffusion Score Matching
Conference on Robot Learning (CoRL), 2023
H.J. Terry Suh
Glen Chou
Hongkai Dai
Lujie Yang
Abhishek Gupta
Russ Tedrake
DiffM
OffRL
212
14
0
24 Jun 2023
Memory-Query Tradeoffs for Randomized Convex Optimization
IEEE Annual Symposium on Foundations of Computer Science (FOCS), 2023
Xinyu Chen
Binghui Peng
180
8
0
21 Jun 2023
How to escape sharp minima with random perturbations
International Conference on Machine Learning (ICML), 2023
Kwangjun Ahn
Ali Jadbabaie
S. Sra
ODL
336
12
0
25 May 2023
Computationally Efficient and Statistically Optimal Robust High-Dimensional Linear Regression
Yinan Shen
Jingyang Li
Jian-Feng Cai
Dong Xia
217
2
0
10 May 2023
ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional Compression
Conference on Uncertainty in Artificial Intelligence (UAI), 2023
Avetik G. Karagulyan
Peter Richtárik
FedML
215
6
0
08 Mar 2023
Stochastic Approximation Beyond Gradient for Signal Processing and Machine Learning
IEEE Transactions on Signal Processing (IEEE TSP), 2023
Hadrien Hendrikx
G. Fort
Eric Moulines
Hoi-To Wai
200
15
0
22 Feb 2023
Deterministic Nonsmooth Nonconvex Optimization
Annual Conference Computational Learning Theory (COLT), 2023
Michael I. Jordan
Guy Kornowski
Tianyi Lin
Ohad Shamir
Manolis Zampetakis
389
31
0
16 Feb 2023
Mithridates: Auditing and Boosting Backdoor Resistance of Machine Learning Pipelines
Conference on Computer and Communications Security (CCS), 2023
Eugene Bagdasaryan
Vitaly Shmatikov
AAML
259
3
0
09 Feb 2023
Optimal Stochastic Non-smooth Non-convex Optimization through Online-to-Non-convex Conversion
International Conference on Machine Learning (ICML), 2023
Ashok Cutkosky
Harsh Mehta
Francesco Orabona
340
47
0
07 Feb 2023
Gradient Descent with Linearly Correlated Noise: Theory and Applications to Differential Privacy
Neural Information Processing Systems (NeurIPS), 2023
Anastasia Koloskova
Ryan McKenna
Zachary B. Charles
Keith Rush
Brendan McMahan
481
14
0
02 Feb 2023
Smoothed Online Learning for Prediction in Piecewise Affine Systems
Neural Information Processing Systems (NeurIPS), 2023
Adam Block
Max Simchowitz
Russ Tedrake
203
13
0
26 Jan 2023
ApproxED: Approximate exploitability descent via learned best responses
Adaptive Agents and Multi-Agent Systems (AAMAS), 2023
Carlos Martin
Tuomas Sandholm
330
1
0
20 Jan 2023
Faster Gradient-Free Algorithms for Nonsmooth Nonconvex Stochastic Optimization
International Conference on Machine Learning (ICML), 2023
Le‐Yu Chen
Jing Xu
Luo Luo
205
22
0
16 Jan 2023
ReSQueing Parallel and Private Stochastic Convex Optimization
IEEE Annual Symposium on Foundations of Computer Science (FOCS), 2023
Y. Carmon
A. Jambulapati
Yujia Jin
Y. Lee
Daogao Liu
Aaron Sidford
Kevin Tian
FedML
330
18
0
01 Jan 2023
1
2
3
Next