ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1103.4296
  4. Cited By
Randomized Smoothing for Stochastic Optimization
v1v2 (latest)

Randomized Smoothing for Stochastic Optimization

SIAM Journal on Optimization (SIOPT), 2011
22 March 2011
John C. Duchi
Peter L. Bartlett
Martin J. Wainwright
ArXiv (abs)PDFHTML

Papers citing "Randomized Smoothing for Stochastic Optimization"

38 / 138 papers shown
Title
Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks
  Trained with the Logistic Loss
Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic LossAnnual Conference Computational Learning Theory (COLT), 2020
Lénaïc Chizat
Francis R. Bach
MLT
590
364
0
11 Feb 2020
Theoretical Limits of Pipeline Parallel Optimization and Application to
  Distributed Deep Learning
Theoretical Limits of Pipeline Parallel Optimization and Application to Distributed Deep LearningNeural Information Processing Systems (NeurIPS), 2019
Igor Colin
Ludovic Dos Santos
Kevin Scaman
98
10
0
11 Oct 2019
Sign-OPT: A Query-Efficient Hard-label Adversarial Attack
Sign-OPT: A Query-Efficient Hard-label Adversarial AttackInternational Conference on Learning Representations (ICLR), 2019
Minhao Cheng
Simranjit Singh
Patrick H. Chen
Pin-Yu Chen
Sijia Liu
Cho-Jui Hsieh
AAML
516
244
0
24 Sep 2019
Regularized Diffusion Adaptation via Conjugate Smoothing
Regularized Diffusion Adaptation via Conjugate SmoothingIEEE Transactions on Automatic Control (IEEE TAC), 2019
Stefan Vlaski
L. Vandenberghe
Ali H. Sayed
126
7
0
20 Sep 2019
On the Design of Black-box Adversarial Examples by Leveraging
  Gradient-free Optimization and Operator Splitting Method
On the Design of Black-box Adversarial Examples by Leveraging Gradient-free Optimization and Operator Splitting MethodIEEE International Conference on Computer Vision (ICCV), 2019
Pu Zhao
Sijia Liu
Pin-Yu Chen
Nghia Hoang
Kaidi Xu
B. Kailkhura
Xue Lin
AAML
307
57
0
26 Jul 2019
Complexity of Highly Parallel Non-Smooth Convex Optimization
Complexity of Highly Parallel Non-Smooth Convex OptimizationNeural Information Processing Systems (NeurIPS), 2019
Sébastien Bubeck
Qijia Jiang
Y. Lee
Yuanzhi Li
Aaron Sidford
215
57
0
25 Jun 2019
Langevin Monte Carlo without smoothness
Langevin Monte Carlo without smoothnessInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Niladri S. Chatterji
Jelena Diakonikolas
Sai Li
Peter L. Bartlett
BDL
252
48
0
30 May 2019
Certified Adversarial Robustness via Randomized Smoothing
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
835
2,268
0
08 Feb 2019
Lower Bounds for Parallel and Randomized Convex Optimization
Lower Bounds for Parallel and Randomized Convex Optimization
Jelena Diakonikolas
Cristóbal Guzmán
306
44
0
05 Nov 2018
A Dual Approach for Optimal Algorithms in Distributed Optimization over
  Networks
A Dual Approach for Optimal Algorithms in Distributed Optimization over Networks
César A. Uribe
Soomin Lee
Alexander Gasnikov
A. Nedić
193
142
0
03 Sep 2018
Privacy Amplification by Iteration
Privacy Amplification by Iteration
Vitaly Feldman
Ilya Mironov
Kunal Talwar
Abhradeep Thakurta
FedML
233
190
0
20 Aug 2018
Parallelization does not Accelerate Convex Optimization: Adaptivity
  Lower Bounds for Non-smooth Convex Minimization
Parallelization does not Accelerate Convex Optimization: Adaptivity Lower Bounds for Non-smooth Convex Minimization
Eric Balkanski
Yaron Singer
205
31
0
12 Aug 2018
Contextual bandits with surrogate losses: Margin bounds and efficient
  algorithms
Contextual bandits with surrogate losses: Margin bounds and efficient algorithmsNeural Information Processing Systems (NeurIPS), 2018
Dylan J. Foster
A. Krishnamurthy
280
18
0
28 Jun 2018
Faster Rates for Convex-Concave Games
Faster Rates for Convex-Concave Games
Jacob D. Abernethy
Kevin A. Lai
Kfir Y. Levy
Jun-Kun Wang
129
49
0
17 May 2018
Randomized Smoothing SVRG for Large-scale Nonsmooth Convex Optimization
Randomized Smoothing SVRG for Large-scale Nonsmooth Convex Optimization
Wenjie Huang
84
0
0
11 May 2018
Algorithmic Social Intervention
Algorithmic Social Intervention
Bryan Wilder
135
1
0
14 Mar 2018
Dimensionality Reduction for Stationary Time Series via Stochastic
  Nonconvex Optimization
Dimensionality Reduction for Stationary Time Series via Stochastic Nonconvex Optimization
Minshuo Chen
Ling Yang
Mengdi Wang
T. Zhao
224
11
0
06 Mar 2018
Distributionally Robust Submodular Maximization
Distributionally Robust Submodular Maximization
Matthew Staib
Bryan Wilder
Stefanie Jegelka
199
39
0
14 Feb 2018
Stochastic Variance Reduction Gradient for a Non-convex Problem Using
  Graduated Optimization
Stochastic Variance Reduction Gradient for a Non-convex Problem Using Graduated Optimization
Li Chen
Shuisheng Zhou
Zhuan Zhang
98
3
0
10 Jul 2017
Inexact Proximal Gradient Methods for Non-convex and Non-smooth
  Optimization
Inexact Proximal Gradient Methods for Non-convex and Non-smooth OptimizationAAAI Conference on Artificial Intelligence (AAAI), 2016
Bin Gu
De Wang
Zhouyuan Huo
Heng-Chiao Huang
339
43
0
18 Dec 2016
Zeroth-order Asynchronous Doubly Stochastic Algorithm with Variance
  Reduction
Zeroth-order Asynchronous Doubly Stochastic Algorithm with Variance Reduction
Bin Gu
Zhouyuan Huo
Heng-Chiao Huang
120
17
0
05 Dec 2016
An Inexact Variable Metric Proximal Point Algorithm for Generic
  Quasi-Newton Acceleration
An Inexact Variable Metric Proximal Point Algorithm for Generic Quasi-Newton AccelerationSIAM Journal on Optimization (SIAM J. Optim.), 2016
Hongzhou Lin
Julien Mairal
Zaïd Harchaoui
254
13
0
04 Oct 2016
Data Dependent Convergence for Distributed Stochastic Optimization
Data Dependent Convergence for Distributed Stochastic Optimization
A. Bijral
115
0
0
30 Aug 2016
Algorithms for stochastic optimization with functional or expectation
  constraints
Algorithms for stochastic optimization with functional or expectation constraints
Guanghui Lan
Zhiqiang Zhou
279
50
0
13 Apr 2016
Training Recurrent Neural Networks by Diffusion
Training Recurrent Neural Networks by Diffusion
H. Mobahi
ODL
179
46
0
16 Jan 2016
Scalable Computation of Regularized Precision Matrices via Stochastic
  Optimization
Scalable Computation of Regularized Precision Matrices via Stochastic Optimization
Yves F. Atchadé
Rahul Mazumder
Jie-bin Chen
99
8
0
01 Sep 2015
Perturbed Iterate Analysis for Asynchronous Stochastic Optimization
Perturbed Iterate Analysis for Asynchronous Stochastic OptimizationSIAM Journal on Optimization (SIAM J. Optim.), 2015
Horia Mania
Xinghao Pan
Dimitris Papailiopoulos
Benjamin Recht
Kannan Ramchandran
Sai Li
263
243
0
24 Jul 2015
Spectral Smoothing via Random Matrix Perturbations
Jacob D. Abernethy
Chansoo Lee
Ambuj Tewari
166
3
0
10 Jul 2015
Taming the Wild: A Unified Analysis of Hogwild!-Style Algorithms
Taming the Wild: A Unified Analysis of Hogwild!-Style Algorithms
Christopher De Sa
Ce Zhang
K. Olukotun
Christopher Ré
273
209
0
22 Jun 2015
An Asynchronous Mini-Batch Algorithm for Regularized Stochastic
  Optimization
An Asynchronous Mini-Batch Algorithm for Regularized Stochastic Optimization
Hamid Reza Feyzmahdavian
Arda Aytekin
M. Johansson
184
122
0
18 May 2015
Exploiting Smoothness in Statistical Learning, Sequential Prediction,
  and Stochastic Optimization
Exploiting Smoothness in Statistical Learning, Sequential Prediction, and Stochastic Optimization
M. Mahdavi
289
5
0
19 Jul 2014
Online Linear Optimization via Smoothing
Online Linear Optimization via SmoothingAnnual Conference Computational Learning Theory (COLT), 2014
Jacob D. Abernethy
Chansoo Lee
Abhinav Sinha
Ambuj Tewari
235
81
0
23 May 2014
On perturbed proximal gradient algorithms
On perturbed proximal gradient algorithms
Yves Atchadé
G. Fort
Eric Moulines
351
99
0
11 Feb 2014
Optimal rates for zero-order convex optimization: the power of two
  function evaluations
Optimal rates for zero-order convex optimization: the power of two function evaluationsIEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2013
John C. Duchi
Sai Li
Martin J. Wainwright
Andre Wibisono
355
530
0
07 Dec 2013
Stochastic First- and Zeroth-order Methods for Nonconvex Stochastic
  Programming
Stochastic First- and Zeroth-order Methods for Nonconvex Stochastic ProgrammingSIAM Journal on Optimization (SIAM J. Optim.), 2013
Saeed Ghadimi
Guanghui Lan
ODL
743
1,701
0
22 Sep 2013
Mini-Batch Primal and Dual Methods for SVMs
Mini-Batch Primal and Dual Methods for SVMsInternational Conference on Machine Learning (ICML), 2013
Martin Takáč
A. Bijral
Peter Richtárik
Nathan Srebro
186
194
0
10 Mar 2013
Passive Learning with Target Risk
Passive Learning with Target RiskAnnual Conference Computational Learning Theory (COLT), 2013
M. Mahdavi
Rong Jin
AAML
139
4
0
08 Feb 2013
Stochastic Smoothing for Nonsmooth Minimizations: Accelerating SGD by
  Exploiting Structure
Stochastic Smoothing for Nonsmooth Minimizations: Accelerating SGD by Exploiting StructureInternational Conference on Machine Learning (ICML), 2012
H. Ouyang
Alexander G. Gray
304
28
0
21 May 2012
Previous
123