Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1111.4246
Cited By
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
18 November 2011
Matthew D. Hoffman
Andrew Gelman
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo"
32 / 32 papers shown
Title
JaxSGMC: Modular stochastic gradient MCMC in JAX
Stephan Thaler
Paul Fuchs
Ana Cukarska
Julija Zavadlav
BDL
128
2
0
16 May 2025
Humble your Overconfident Networks: Unlearning Overfitting via Sequential Monte Carlo Tempered Deep Ensembles
Andrew Millard
Zheng Zhao
Joshua Murphy
Simon Maskell
UQCV
BDL
60
0
0
16 May 2025
New affine invariant ensemble samplers and their dimensional scaling
Yifan Chen
78
0
0
05 May 2025
Improving the evaluation of samplers on multi-modal targets
Louis Grenioux
Maxence Noble
Marylou Gabrié
345
0
0
11 Apr 2025
IAEmu: Learning Galaxy Intrinsic Alignment Correlations
Sneh Pandya
Yuanyuan Yang
N. V. Alfen
Jonathan Blazek
Robin Walters
68
1
0
07 Apr 2025
CreINNs: Credal-Set Interval Neural Networks for Uncertainty Estimation in Classification Tasks
Kaizheng Wang
Keivan K1 Shariatmadar
Shireen Kudukkil Manchingal
Fabio Cuzzolin
David Moens
Hans Hallez
UQCV
BDL
175
13
0
28 Jan 2025
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
Julius Berner
Lorenz Richter
Marcin Sendera
Jarrid Rector-Brooks
Nikolay Malkin
OffRL
91
7
0
10 Jan 2025
Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models
Daniela de Albuquerque
John Pearson
DiffM
84
0
0
03 Jan 2025
Improving Pareto Set Learning for Expensive Multi-objective Optimization via Stein Variational Hypernetworks
Minh-Duc Nguyen
Phuong Mai Dinh
Quang-Huy Nguyen
L. P. Hoang
Dung D. Le
81
1
0
23 Dec 2024
Cautious Optimizers: Improving Training with One Line of Code
Kaizhao Liang
Lizhang Chen
B. Liu
Qiang Liu
ODL
143
8
0
25 Nov 2024
Hamiltonian Monte Carlo Inference of Marginalized Linear Mixed-Effects Models
Jinlin Lai
Justin Domke
Daniel Sheldon
71
0
0
31 Oct 2024
Noise-Aware Differentially Private Variational Inference
Talal Alrawajfeh
Hibiki Ito
Antti Honkela
90
0
0
25 Oct 2024
Learned Reference-based Diffusion Sampling for multi-modal distributions
Maxence Noble
Louis Grenioux
Marylou Gabrié
Alain Durmus
DiffM
65
3
0
25 Oct 2024
AutoStep: Locally adaptive involutive MCMC
Tiange Liu
Nikola Surjanovic
Miguel Biron-Lattes
Alexandre Bouchard-Côté
Trevor Campbell
48
1
0
24 Oct 2024
Predictive variational inference: Learn the predictively optimal posterior distribution
Jinlin Lai
Yuling Yao
BDL
50
0
0
18 Oct 2024
Bayesian Experimental Design via Contrastive Diffusions
Jacopo Iollo
Christophe Heinkelé
Pierre Alliez
Florence Forbes
73
0
0
15 Oct 2024
Variational Inference in Location-Scale Families: Exact Recovery of the Mean and Correlation Matrix
C. Margossian
Lawrence K. Saul
64
1
0
14 Oct 2024
Can We Predict Performance of Large Models across Vision-Language Tasks?
Qinyu Zhao
Ming Xu
Kartik Gupta
Akshay Asthana
Liang Zheng
Stephen Gould
70
0
0
14 Oct 2024
Implicit Dynamical Flow Fusion (IDFF) for Generative Modeling
Mohammad R. Rezaei
Rahul G. Krishnan
Milos R. Popovic
M. Lankarany
DiffM
45
0
0
22 Sep 2024
Inverse decision-making using neural amortized Bayesian actors
Dominik Straub
Tobias F. Niehues
Jan Peters
Constantin Rothkopf
93
1
0
04 Sep 2024
Gradient-free variational learning with conditional mixture networks
Conor Heins
Hao Wu
Dimitrije Marković
Alexander Tschantz
Jeff Beck
Christopher L. Buckley
BDL
59
3
0
29 Aug 2024
Randomized Transport Plans via Hierarchical Fully Probabilistic Design
Sarah Boufelja
Anthony Quinn
Robert Shorten
OT
71
0
0
04 Aug 2024
Importance Corrected Neural JKO Sampling
Johannes Hertrich
Robert Gruhlke
78
2
0
29 Jul 2024
Scalable Bayesian Learning with posteriors
Samuel Duffield
Kaelan Donatella
Johnathan Chiu
Phoebe Klett
Daniel Simpson
BDL
UQCV
92
1
0
31 May 2024
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Jiayuan Dong
Christian L. Jacobsen
Mehdi Khalloufi
Maryam Akram
Wanjiao Liu
Karthik Duraisamy
Xun Huan
BDL
95
7
0
08 Apr 2024
Variational Inference for Uncertainty Quantification: an Analysis of Trade-offs
C. Margossian
Loucas Pillaud-Vivien
Lawrence K. Saul
UD
102
2
0
20 Mar 2024
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
86
22
0
07 Feb 2024
Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference
Philipp Reiser
Javier Enrique Aguilar
A. Guthke
Paul-Christian Bürkner
53
2
0
08 Dec 2023
Towards Understanding Sycophancy in Language Models
Mrinank Sharma
Meg Tong
Tomasz Korbak
David Duvenaud
Amanda Askell
...
Oliver Rausch
Nicholas Schiefer
Da Yan
Miranda Zhang
Ethan Perez
257
211
0
20 Oct 2023
Fitting Bayesian item response models in Stata and Stan
Robert Grant
Daniel Furr
Bob Carpenter
Andrew Gelman
159
17
0
13 Jan 2016
Distributed Bayesian Learning with Stochastic Natural-gradient Expectation Propagation and the Posterior Server
Leonard Hasenclever
Stefan Webb
Thibaut Lienart
Sebastian J. Vollmer
Balaji Lakshminarayanan
Charles Blundell
Yee Whye Teh
BDL
83
70
0
31 Dec 2015
MCMC using Hamiltonian dynamics
Radford M. Neal
285
3,278
0
09 Jun 2012
1