Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1210.2123
Cited By
Privacy Against Statistical Inference
8 October 2012
Flavio du Pin Calmon
N. Fawaz
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Privacy Against Statistical Inference"
50 / 82 papers shown
Title
Breaking the Gaussian Barrier: Residual-PAC Privacy for Automatic Privatization
Tao Zhang
Yevgeniy Vorobeychik
20
0
0
06 Jun 2025
Analyzing Inference Privacy Risks Through Gradients in Machine Learning
Zhuohang Li
Andrew Lowy
Jing Liu
T. Koike-Akino
K. Parsons
Bradley Malin
Ye Wang
FedML
64
1
0
29 Aug 2024
Information Density Bounds for Privacy
Sara Saeidian
Leonhard Grosse
Parastoo Sadeghi
Mikael Skoglund
T. Oechtering
60
1
0
01 Jul 2024
Federated Graph Condensation with Information Bottleneck Principles
Bo Yan
DD
FedML
75
4
0
07 May 2024
Maximal
α
α
α
-Leakage for Quantum Privacy Mechanisms
Bo-Yu Yang
Hsuan Yu
Hao-Chung Cheng
52
0
0
21 Mar 2024
Quantifying Privacy via Information Density
Leonhard Grosse
Sara Saeidian
Parastoo Sadeghi
T. Oechtering
Mikael Skoglund
24
5
0
20 Feb 2024
Privacy for Fairness: Information Obfuscation for Fair Representation Learning with Local Differential Privacy
Songjie Xie
Youlong Wu
Jiaxuan Li
Ming Ding
Khaled B. Letaief
AAML
59
1
0
16 Feb 2024
Approximation of Pufferfish Privacy for Gaussian Priors
Ni Ding
FedML
40
0
0
22 Jan 2024
Online Context-aware Data Release with Sequence Information Privacy
Bo Jiang
Ming Li
Ravi Tandon
34
2
0
26 Jul 2023
A Meta-learning Framework for Tuning Parameters of Protection Mechanisms in Trustworthy Federated Learning
Xiaojin Zhang
Yan Kang
Lixin Fan
Kai Chen
Qiang Yang
FedML
49
6
0
28 May 2023
Theoretically Principled Federated Learning for Balancing Privacy and Utility
Xiaojin Zhang
Wenjie Li
Kai Chen
Shutao Xia
Qian Yang
FedML
49
9
0
24 May 2023
Towards Achieving Near-optimal Utility for Privacy-Preserving Federated Learning via Data Generation and Parameter Distortion
Xiaojin Zhang
Kai Chen
Qian Yang
FedML
58
5
0
07 May 2023
Bounding the Invertibility of Privacy-preserving Instance Encoding using Fisher Information
Kiwan Maeng
Chuan Guo
Sanjay Kariyappa
G. E. Suh
75
8
0
06 May 2023
Optimizing Privacy, Utility and Efficiency in Constrained Multi-Objective Federated Learning
Yan Kang
Hanlin Gu
Xingxing Tang
Yuanqin He
Yuzhu Zhang
Jinnan He
Yuxing Han
Lixin Fan
Kai Chen
Qiang Yang
FedML
117
19
0
29 Apr 2023
Pointwise Maximal Leakage on General Alphabets
Sara Saeidian
Giulia Cervia
T. Oechtering
Mikael Skoglund
47
5
0
16 Apr 2023
A Game-theoretic Framework for Privacy-preserving Federated Learning
Xiaojin Zhang
Lixin Fan
Si-Yi Wang
Wenjie Li
Kai Chen
Qiang Yang
FedML
48
4
0
11 Apr 2023
Probably Approximately Correct Federated Learning
Xiaojin Zhang
Anbu Huang
Lixin Fan
Kai Chen
Qiang Yang
FedML
74
5
0
10 Apr 2023
Can Querying for Bias Leak Protected Attributes? Achieving Privacy With Smooth Sensitivity
Faisal Hamman
Jiahao Chen
Sanghamitra Dutta
59
9
0
03 Nov 2022
Explaining epsilon in local differential privacy through the lens of quantitative information flow
Natasha Fernandes
Annabelle McIver
Parastoo Sadeghi
PILM
40
2
0
24 Oct 2022
Trading Off Privacy, Utility and Efficiency in Federated Learning
Xiaojin Zhang
Yan Kang
Kai Chen
Lixin Fan
Qiang Yang
FedML
120
55
0
01 Sep 2022
Deep Joint Source-Channel and Encryption Coding: Secure Semantic Communications
Tze-Yang Tung
Deniz Gunduz
BDL
89
50
0
19 Aug 2022
Bottlenecks CLUB: Unifying Information-Theoretic Trade-offs Among Complexity, Leakage, and Utility
Behrooz Razeghi
Flavio du Pin Calmon
Deniz Gunduz
Svyatoslav Voloshynovskiy
58
16
0
11 Jul 2022
Classification Utility, Fairness, and Compactness via Tunable Information Bottleneck and Rényi Measures
A. Gronowski
William Paul
F. Alajaji
Bahman Gharesifard
Philippe Burlina
FaML
56
3
0
20 Jun 2022
No Free Lunch Theorem for Security and Utility in Federated Learning
Xiaojin Zhang
Hanlin Gu
Lixin Fan
Kai Chen
Qiang Yang
FedML
92
66
0
11 Mar 2022
Active Privacy-Utility Trade-off Against Inference in Time-Series Data Sharing
Ece Naz Erdemir
Pier Luigi Dragotti
Deniz Gunduz
47
8
0
11 Feb 2022
Lossy Compression of Noisy Data for Private and Data-Efficient Learning
Berivan Isik
Tsachy Weissman
64
3
0
07 Feb 2022
Kantorovich Mechanism for Pufferfish Privacy
Ni Ding
57
3
0
19 Jan 2022
HyObscure: Hybrid Obscuring for Privacy-Preserving Data Publishing
Xiao Han
Yuncong Yang
Junjie Wu
48
1
0
15 Dec 2021
Privacy-Aware Communication Over a Wiretap Channel with Generative Networks
Ece Naz Erdemir
Pier Luigi Dragotti
Deniz Gunduz
82
24
0
08 Oct 2021
Subset Privacy: Draw from an Obfuscated Urn
G. Wang
Jie Ding
39
2
0
02 Jul 2021
A Survey of Privacy Vulnerabilities of Mobile Device Sensors
Paula Delgado-Santos
Giuseppe Stragapede
Ruben Tolosana
R. Guest
F. Deravi
R. Vera-Rodríguez
PILM
73
47
0
18 Jun 2021
Interval Privacy: A Framework for Privacy-Preserving Data Collection
Jie Ding
Bangjun Ding
75
6
0
17 Jun 2021
Privacy Assessment of Federated Learning using Private Personalized Layers
T. Jourdan
A. Boutet
Carole Frindel
FedML
70
7
0
15 Jun 2021
Distributed Banach-Picard Iteration for Locally Contractive Maps
Francisco Andrade
Mário A. T. Figueiredo
J. Xavier
51
2
0
31 Mar 2021
Active Privacy-utility Trade-off Against a Hypothesis Testing Adversary
Ece Naz Erdemir
Pier Luigi Dragotti
Deniz Gunduz
75
9
0
16 Feb 2021
Impact of Data Processing on Fairness in Supervised Learning
S. Khodadadian
AmirEmad Ghassami
Negar Kiyavash
FaML
36
6
0
03 Feb 2021
Privacy-Constrained Policies via Mutual Information Regularized Policy Gradients
Chris Cundy
Rishi Desai
Stefano Ermon
OffRL
116
4
0
30 Dec 2020
Fundamental Limits of Obfuscation for Linear Gaussian Dynamical Systems: An Information-Theoretic Approach
Song Fang
Quanyan Zhu
39
3
0
29 Oct 2020
Non-Stochastic Private Function Evaluation
F. Farokhi
G. Nair
55
3
0
20 Oct 2020
Learning, compression, and leakage: Minimising classification error via meta-universal compression principles
F. Rosas
P. Mediano
Michael C. Gastpar
27
10
0
14 Oct 2020
Data-driven Regularized Inference Privacy
C. Wang
Wee Peng Tay
83
3
0
10 Oct 2020
Privacy in Targeted Advertising: A Survey
Imdad Ullah
R. Boreli
S. Kanhere
49
18
0
15 Sep 2020
Information Laundering for Model Privacy
Xinran Wang
Yu Xiang
Jun Gao
Jie Ding
26
24
0
13 Sep 2020
On Perfect Obfuscation: Local Information Geometry Analysis
Behrooz Razeghi
Flavio du Pin Calmon
Deniz Gunduz
Svyatoslav Voloshynovskiy
50
14
0
09 Sep 2020
Imitation Privacy
Xun Xian
Xinran Wang
Mingyi Hong
Jie Ding
R. Ghanadan
53
3
0
30 Aug 2020
Robust Machine Learning via Privacy/Rate-Distortion Theory
Ye Wang
Shuchin Aeron
Adnan Siraj Rakin
T. Koike-Akino
P. Moulin
OOD
62
6
0
22 Jul 2020
No-Go Theorems for Data Privacy
T. Studer
18
2
0
28 May 2020
Operationalizing the Legal Principle of Data Minimization for Personalization
Asia J. Biega
P. Potash
Hal Daumé
Fernando Diaz
Michèle Finck
AILaw
91
70
0
28 May 2020
Assisted Learning: A Framework for Multi-Organization Learning
Xun Xian
Xinran Wang
Jie Ding
R. Ghanadan
FedML
47
1
0
01 Apr 2020
To Split or Not to Split: The Impact of Disparate Treatment in Classification
Hao Wang
Hsiang Hsu
Mario Díaz
Flavio du Pin Calmon
112
23
0
12 Feb 2020
1
2
Next