ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1210.4856
  4. Cited By
Exploiting compositionality to explore a large space of model structures

Exploiting compositionality to explore a large space of model structures

16 October 2012
Roger C. Grosse
Ruslan Salakhutdinov
William T. Freeman
J. Tenenbaum
ArXiv (abs)PDFHTML

Papers citing "Exploiting compositionality to explore a large space of model structures"

30 / 30 papers shown
Title
Explaining the Success of Nearest Neighbor Methods in Prediction
George H. Chen
Devavrat Shah
OOD
605
148
0
21 Feb 2025
Structure Learning via Mutual Information
Structure Learning via Mutual Information
Jeremy Nixon
23
0
0
21 Sep 2024
G-EvoNAS: Evolutionary Neural Architecture Search Based on Network
  Growth
G-EvoNAS: Evolutionary Neural Architecture Search Based on Network Growth
Juan Zou
Weiwei Jiang
Yizhang Xia
Yuan Liu
Zhanglu Hou
94
0
0
05 Mar 2024
Gaussian Process Latent Variable Modeling for Few-shot Time Series Forecasting
Gaussian Process Latent Variable Modeling for Few-shot Time Series Forecasting
Yunyao Cheng
Chenjuan Guo
Kai Chen
Kai Zhao
B. Yang
Jiandong Xie
Christian S. Jensen
Feiteng Huang
Kai Zheng
AI4TS
72
1
0
20 Dec 2022
Modelling Non-Smooth Signals with Complex Spectral Structure
Modelling Non-Smooth Signals with Complex Spectral Structure
W. Bruinsma
Martin Tegnér
Richard Turner
79
6
0
14 Mar 2022
Bandits for Learning to Explain from Explanations
Bandits for Learning to Explain from Explanations
Freya Behrens
Stefano Teso
Davide Mottin
FAtt
41
1
0
07 Feb 2021
Learning Compositional Sparse Gaussian Processes with a Shrinkage Prior
Learning Compositional Sparse Gaussian Processes with a Shrinkage Prior
Anh Tong
Toan M. Tran
Hung Bui
Jaesik Choi
37
3
0
21 Dec 2020
Automating Involutive MCMC using Probabilistic and Differentiable
  Programming
Automating Involutive MCMC using Probabilistic and Differentiable Programming
Marco F. Cusumano-Towner
Alexander K. Lew
Vikash K. Mansinghka
76
17
0
20 Jul 2020
Dynamic Relational Inference in Multi-Agent Trajectories
Dynamic Relational Inference in Multi-Agent Trajectories
Ruichao Xiao
Manish Kumar Singh
Rose Yu
115
2
0
16 Jul 2020
A Survey of Machine Learning Methods and Challenges for Windows Malware
  Classification
A Survey of Machine Learning Methods and Challenges for Windows Malware Classification
Edward Raff
Charles K. Nicholas
AAML
70
57
0
15 Jun 2020
Towards Assessing the Impact of Bayesian Optimization's Own
  Hyperparameters
Towards Assessing the Impact of Bayesian Optimization's Own Hyperparameters
Marius Lindauer
Matthias Feurer
Katharina Eggensperger
André Biedenkapp
Frank Hutter
129
18
0
19 Aug 2019
Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling
Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling
Feras A. Saad
Marco F. Cusumano-Towner
Ulrich Schaechtle
Martin Rinard
Vikash K. Mansinghka
58
62
0
14 Jul 2019
Modulating Surrogates for Bayesian Optimization
Modulating Surrogates for Bayesian Optimization
Erik Bodin
Markus Kaiser
Ieva Kazlauskaite
Zhenwen Dai
Neill D. F. Campbell
Carl Henrik Ek
30
2
0
26 Jun 2019
Neurally-Guided Structure Inference
Neurally-Guided Structure Inference
Sidi Lu
Jiayuan Mao
J. Tenenbaum
Jiajun Wu
57
7
0
17 Jun 2019
Neural Architecture Optimization
Neural Architecture Optimization
Renqian Luo
Fei Tian
Tao Qin
Enhong Chen
Tie-Yan Liu
3DV
112
659
0
22 Aug 2018
client2vec: Towards Systematic Baselines for Banking Applications
client2vec: Towards Systematic Baselines for Banking Applications
Leonardo Baldassini
Jose Antonio Rodríguez Serrano
AI4TS
34
11
0
12 Feb 2018
Episodic memory for continual model learning
Episodic memory for continual model learning
D. G. Nagy
Gergő Orbán
CLL
21
0
0
04 Dec 2017
Progressive Neural Architecture Search
Progressive Neural Architecture Search
Chenxi Liu
Barret Zoph
Maxim Neumann
Jonathon Shlens
Wei Hua
Li Li
Li Fei-Fei
Alan Yuille
Jonathan Huang
Kevin Patrick Murphy
167
2,000
0
02 Dec 2017
Building machines that adapt and compute like brains
Building machines that adapt and compute like brains
Brenden M. Lake
J. Tenenbaum
AI4CEFedMLNAIAILaw
331
887
0
11 Nov 2017
Meta-Learning MCMC Proposals
Meta-Learning MCMC Proposals
Tongzhou Wang
Yi Wu
David A. Moore
Stuart J. Russell
BDL
80
2
0
21 Aug 2017
Hidden Physics Models: Machine Learning of Nonlinear Partial
  Differential Equations
Hidden Physics Models: Machine Learning of Nonlinear Partial Differential Equations
M. Raissi
George Karniadakis
AI4CEPINN
117
1,145
0
02 Aug 2017
Scaling up the Automatic Statistician: Scalable Structure Discovery
  using Gaussian Processes
Scaling up the Automatic Statistician: Scalable Structure Discovery using Gaussian Processes
Hyunjik Kim
Yee Whye Teh
77
52
0
08 Jun 2017
REMIX: Automated Exploration for Interactive Outlier Detection
REMIX: Automated Exploration for Interactive Outlier Detection
Yanjie Fu
Charu C. Aggarwal
Srinivasan Parthasarathy
D. Turaga
Hui Xiong
27
5
0
17 May 2017
Bachelor's thesis on generative probabilistic programming (in Russian
  language, June 2014)
Bachelor's thesis on generative probabilistic programming (in Russian language, June 2014)
Yura N. Perov
BDL
23
0
0
26 Jan 2016
Sandwiching the marginal likelihood using bidirectional Monte Carlo
Sandwiching the marginal likelihood using bidirectional Monte Carlo
Roger C. Grosse
Zoubin Ghahramani
Ryan P. Adams
93
62
0
08 Nov 2015
A Latent Source Model for Online Collaborative Filtering
A Latent Source Model for Online Collaborative Filtering
Guy Bresler
George H. Chen
Devavrat Shah
FedML
276
59
0
31 Oct 2014
Learning Probabilistic Programs
Learning Probabilistic Programs
Yura N. Perov
Frank Wood
TPM
73
15
0
09 Jul 2014
Venture: a higher-order probabilistic programming platform with
  programmable inference
Venture: a higher-order probabilistic programming platform with programmable inference
Vikash K. Mansinghka
Daniel Selsam
Yura N. Perov
106
256
0
01 Apr 2014
Automatic Construction and Natural-Language Description of Nonparametric
  Regression Models
Automatic Construction and Natural-Language Description of Nonparametric Regression Models
J. Lloyd
David Duvenaud
Roger C. Grosse
J. Tenenbaum
Zoubin Ghahramani
148
242
0
18 Feb 2014
Structure Discovery in Nonparametric Regression through Compositional
  Kernel Search
Structure Discovery in Nonparametric Regression through Compositional Kernel Search
David Duvenaud
J. Lloyd
Roger C. Grosse
J. Tenenbaum
Zoubin Ghahramani
121
511
0
20 Feb 2013
1