ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1212.5701
  4. Cited By
ADADELTA: An Adaptive Learning Rate Method

ADADELTA: An Adaptive Learning Rate Method

22 December 2012
Matthew D. Zeiler
    ODL
ArXivPDFHTML

Papers citing "ADADELTA: An Adaptive Learning Rate Method"

33 / 33 papers shown
Title
A Langevin sampling algorithm inspired by the Adam optimizer
A Langevin sampling algorithm inspired by the Adam optimizer
Benedict Leimkuhler
René Lohmann
Peter Whalley
104
0
0
26 Apr 2025
JotlasNet: Joint Tensor Low-Rank and Attention-based Sparse Unrolling Network for Accelerating Dynamic MRI
JotlasNet: Joint Tensor Low-Rank and Attention-based Sparse Unrolling Network for Accelerating Dynamic MRI
Yinghao Zhang
Haiyan Gui
Ningdi Yang
Yue Hu
80
0
0
17 Feb 2025
Learning to Synthesize Compatible Fashion Items Using Semantic Alignment and Collocation Classification: An Outfit Generation Framework
Learning to Synthesize Compatible Fashion Items Using Semantic Alignment and Collocation Classification: An Outfit Generation Framework
Dongliang Zhou
Haijun Zhang
Kai-Bo Yang
Linlin Liu
Han Yan
Xiaofei Xu
Zhao Zhang
Shuicheng Yan
150
15
0
05 Feb 2025
A Hessian-informed hyperparameter optimization for differential learning rate
A Hessian-informed hyperparameter optimization for differential learning rate
Shiyun Xu
Zhiqi Bu
Yiliang Zhang
Ian Barnett
60
1
0
12 Jan 2025
Accelerating Energy-Efficient Federated Learning in Cell-Free Networks with Adaptive Quantization
Accelerating Energy-Efficient Federated Learning in Cell-Free Networks with Adaptive Quantization
Afsaneh Mahmoudi
Ming Xiao
Emil Björnson
75
0
0
31 Dec 2024
COAP: Memory-Efficient Training with Correlation-Aware Gradient Projection
Jinqi Xiao
S. Sang
Tiancheng Zhi
Jing Liu
Qing Yan
Linjie Luo
Bo Yuan
Bo Yuan
VLM
131
2
0
26 Nov 2024
Nonlinear Stochastic Gradient Descent and Heavy-tailed Noise: A Unified Framework and High-probability Guarantees
Nonlinear Stochastic Gradient Descent and Heavy-tailed Noise: A Unified Framework and High-probability Guarantees
Aleksandar Armacki
Shuhua Yu
Pranay Sharma
Gauri Joshi
Dragana Bajović
D. Jakovetić
S. Kar
78
2
0
17 Oct 2024
Tamper-Resistant Safeguards for Open-Weight LLMs
Tamper-Resistant Safeguards for Open-Weight LLMs
Rishub Tamirisa
Bhrugu Bharathi
Long Phan
Andy Zhou
Alice Gatti
...
Andy Zou
Dawn Song
Bo Li
Dan Hendrycks
Mantas Mazeika
AAML
MU
82
48
0
01 Aug 2024
AdaFisher: Adaptive Second Order Optimization via Fisher Information
AdaFisher: Adaptive Second Order Optimization via Fisher Information
Damien Martins Gomes
Yanlei Zhang
Eugene Belilovsky
Guy Wolf
Mahdi S. Hosseini
ODL
108
2
0
26 May 2024
Variational Stochastic Gradient Descent for Deep Neural Networks
Variational Stochastic Gradient Descent for Deep Neural Networks
Haotian Chen
Anna Kuzina
Babak Esmaeili
Jakub M. Tomczak
59
0
0
09 Apr 2024
Conjugate-Gradient-like Based Adaptive Moment Estimation Optimization Algorithm for Deep Learning
Conjugate-Gradient-like Based Adaptive Moment Estimation Optimization Algorithm for Deep Learning
Jiawu Tian
Liwei Xu
Xiaowei Zhang
Yongqi Li
ODL
69
0
0
02 Apr 2024
Second-Order Fine-Tuning without Pain for LLMs:A Hessian Informed Zeroth-Order Optimizer
Second-Order Fine-Tuning without Pain for LLMs:A Hessian Informed Zeroth-Order Optimizer
Yanjun Zhao
Sizhe Dang
Haishan Ye
Guang Dai
Yi Qian
Ivor W.Tsang
88
9
0
23 Feb 2024
Non-asymptotic Analysis of Biased Adaptive Stochastic Approximation
Non-asymptotic Analysis of Biased Adaptive Stochastic Approximation
Sobihan Surendran
Antoine Godichon-Baggioni
Adeline Fermanian
Sylvain Le Corff
73
1
0
05 Feb 2024
Lower Bounds and Accelerated Algorithms in Distributed Stochastic Optimization with Communication Compression
Lower Bounds and Accelerated Algorithms in Distributed Stochastic Optimization with Communication Compression
Yutong He
Xinmeng Huang
Yiming Chen
W. Yin
Kun Yuan
52
7
0
12 May 2023
KOALA: A Kalman Optimization Algorithm with Loss Adaptivity
KOALA: A Kalman Optimization Algorithm with Loss Adaptivity
A. Davtyan
Sepehr Sameni
L. Cerkezi
Givi Meishvili
Adam Bielski
Paolo Favaro
ODL
91
2
0
07 Jul 2021
DeepRemaster: Temporal Source-Reference Attention Networks for
  Comprehensive Video Enhancement
DeepRemaster: Temporal Source-Reference Attention Networks for Comprehensive Video Enhancement
S. Iizuka
E. Simo-Serra
110
39
0
18 Sep 2020
Deep Learning at the Edge
Deep Learning at the Edge
Sahar Voghoei
N. Tonekaboni
Jason G. Wallace
H. Arabnia
76
41
0
22 Oct 2019
Language model integration based on memory control for sequence to sequence speech recognition
Language model integration based on memory control for sequence to sequence speech recognition
Aaron Springer
Shinji Watanabe
Takaaki Hori
M. Baskar
Hirofumi Inaguma
Jesus Villalba
Najim Dehak
KELM
57
5
0
06 Nov 2018
Paradigm Completion for Derivational Morphology
Paradigm Completion for Derivational Morphology
Ryan Cotterell
Ekaterina Vylomova
Huda Khayrallah
Christo Kirov
David Yarowsky
BDL
58
25
0
30 Aug 2017
Gabor Convolutional Networks
Gabor Convolutional Networks
Shangzhen Luan
Baochang Zhang
Chen Chen
Xianbin Cao
Jiawei Han
Jianzhuang Liu
BDL
86
341
0
03 May 2017
All You Need is Beyond a Good Init: Exploring Better Solution for
  Training Extremely Deep Convolutional Neural Networks with Orthonormality and
  Modulation
All You Need is Beyond a Good Init: Exploring Better Solution for Training Extremely Deep Convolutional Neural Networks with Orthonormality and Modulation
Di Xie
Jiang Xiong
Shiliang Pu
82
181
0
06 Mar 2017
Central Moment Discrepancy (CMD) for Domain-Invariant Representation
  Learning
Central Moment Discrepancy (CMD) for Domain-Invariant Representation Learning
Werner Zellinger
Thomas Grubinger
E. Lughofer
T. Natschläger
Susanne Saminger-Platz
OOD
77
566
0
28 Feb 2017
Activation Ensembles for Deep Neural Networks
Activation Ensembles for Deep Neural Networks
Mark Harmon
Diego Klabjan
79
35
0
24 Feb 2017
Hybrid Dialog State Tracker with ASR Features
Hybrid Dialog State Tracker with ASR Features
Miroslav Vodolán
Rudolf Kadlec
Jan Kleindienst
BDL
43
18
0
21 Feb 2017
Trainable Greedy Decoding for Neural Machine Translation
Trainable Greedy Decoding for Neural Machine Translation
Jiatao Gu
Kyunghyun Cho
Victor O.K. Li
114
74
0
08 Feb 2017
Visual Saliency Prediction Using a Mixture of Deep Neural Networks
Visual Saliency Prediction Using a Mixture of Deep Neural Networks
Samuel F. Dodge
Lina Karam
FAtt
59
48
0
01 Feb 2017
Attention-Based Multimodal Fusion for Video Description
Attention-Based Multimodal Fusion for Video Description
Chiori Hori
Takaaki Hori
Teng-Yok Lee
Kazuhiro Sumi
J. Hershey
Tim K. Marks
56
359
0
11 Jan 2017
Character-level and Multi-channel Convolutional Neural Networks for
  Large-scale Authorship Attribution
Character-level and Multi-channel Convolutional Neural Networks for Large-scale Authorship Attribution
Sebastian Ruder
Parsa Ghaffari
J. Breslin
48
114
0
21 Sep 2016
A Kronecker-factored approximate Fisher matrix for convolution layers
A Kronecker-factored approximate Fisher matrix for convolution layers
Roger C. Grosse
James Martens
ODL
67
260
0
03 Feb 2016
Robobarista: Learning to Manipulate Novel Objects via Deep Multimodal
  Embedding
Robobarista: Learning to Manipulate Novel Objects via Deep Multimodal Embedding
Jaeyong Sung
Seok Hyun Jin
Ian Lenz
Ashutosh Saxena
LM&Ro
23
16
0
12 Jan 2016
Learning to Compose Neural Networks for Question Answering
Learning to Compose Neural Networks for Question Answering
Jacob Andreas
Marcus Rohrbach
Trevor Darrell
Dan Klein
NAI
KELM
BDL
CoGe
54
565
0
07 Jan 2016
On Using Monolingual Corpora in Neural Machine Translation
On Using Monolingual Corpora in Neural Machine Translation
Çağlar Gülçehre
Orhan Firat
Kelvin Xu
Kyunghyun Cho
Loïc Barrault
Huei-Chi Lin
Fethi Bougares
Holger Schwenk
Yoshua Bengio
87
560
0
11 Mar 2015
No More Pesky Learning Rates
No More Pesky Learning Rates
Tom Schaul
Sixin Zhang
Yann LeCun
77
477
0
06 Jun 2012
1