ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1301.4320
  4. Cited By
Cross Validation and Maximum Likelihood estimations of hyper-parameters
  of Gaussian processes with model misspecification
v1v2v3 (latest)

Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification

18 January 2013
François Bachoc
ArXiv (abs)PDFHTML

Papers citing "Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification"

50 / 64 papers shown
Title
Weighted Leave-One-Out Cross Validation
Weighted Leave-One-Out Cross Validation
L. Pronzato
M. Rendas
72
0
0
26 May 2025
Adaptive Replication Strategies in Trust-Region-Based Bayesian Optimization of Stochastic Functions
Adaptive Replication Strategies in Trust-Region-Based Bayesian Optimization of Stochastic Functions
Mickael Binois
Jeffrey Larson
122
0
0
29 Apr 2025
Bayesian Optimisation with Unknown Hyperparameters: Regret Bounds
  Logarithmically Closer to Optimal
Bayesian Optimisation with Unknown Hyperparameters: Regret Bounds Logarithmically Closer to Optimal
Juliusz Ziomek
Masaki Adachi
Michael A. Osborne
93
1
0
14 Oct 2024
Multifidelity Cross-validation
Multifidelity Cross-validation
Sudharshan Ashwin Renganathan
Kade Carlson
85
0
0
01 Jul 2024
Asymptotic analysis for covariance parameter estimation of Gaussian
  processes with functional inputs
Asymptotic analysis for covariance parameter estimation of Gaussian processes with functional inputs
Lucas Reding
A. F. López-Lopera
François Bachoc
70
1
0
26 Apr 2024
Robust and Conjugate Gaussian Process Regression
Robust and Conjugate Gaussian Process Regression
Matias Altamirano
F. Briol
Jeremias Knoblauch
84
13
0
01 Nov 2023
Comparing Scale Parameter Estimators for Gaussian Process Interpolation
  with the Brownian Motion Prior: Leave-One-Out Cross Validation and Maximum
  Likelihood
Comparing Scale Parameter Estimators for Gaussian Process Interpolation with the Brownian Motion Prior: Leave-One-Out Cross Validation and Maximum Likelihood
Masha Naslidnyk
Motonobu Kanagawa
Toni Karvonen
Maren Mahsereci
GP
50
1
0
14 Jul 2023
Provably Efficient Bayesian Optimization with Unknown Gaussian Process
  Hyperparameter Estimation
Provably Efficient Bayesian Optimization with Unknown Gaussian Process Hyperparameter Estimation
Huong Ha
Vu-Linh Nguyen
Hung Tran-The
Hongyu Zhang
Xiuzhen Zhang
Anton Van Den Hengel
73
1
0
12 Jun 2023
A comparison between Bayesian and ordinary kriging based on validation
  criteria: application to radiological characterisation
A comparison between Bayesian and ordinary kriging based on validation criteria: application to radiological characterisation
Martin Wieskotten
M. Crozet
Bertrand Iooss
C. Lacaux
A. Marrel
45
10
0
12 May 2023
Learning non-stationary and discontinuous functions using clustering,
  classification and Gaussian process modelling
Learning non-stationary and discontinuous functions using clustering, classification and Gaussian process modelling
M. Moustapha
Bruno Sudret
56
9
0
30 Nov 2022
Bayesian Optimization with Conformal Prediction Sets
Bayesian Optimization with Conformal Prediction Sets
Samuel Stanton
Wesley J. Maddox
A. Wilson
147
26
0
22 Oct 2022
Gaussian Processes on Distributions based on Regularized Optimal
  Transport
Gaussian Processes on Distributions based on Regularized Optimal Transport
François Bachoc
Louis Bethune
Alberto González Sanz
Jean-Michel Loubes
GPOT
66
8
0
12 Oct 2022
Maximum Likelihood Estimation in Gaussian Process Regression is
  Ill-Posed
Maximum Likelihood Estimation in Gaussian Process Regression is Ill-Posed
Toni Karvonen
Chris J. Oates
GP
78
26
0
17 Mar 2022
Asymptotic Bounds for Smoothness Parameter Estimates in Gaussian Process
  Interpolation
Asymptotic Bounds for Smoothness Parameter Estimates in Gaussian Process Interpolation
Toni Karvonen
66
3
0
10 Mar 2022
Multi-objective robust optimization using adaptive surrogate models for
  problems with mixed continuous-categorical parameters
Multi-objective robust optimization using adaptive surrogate models for problems with mixed continuous-categorical parameters
M. Moustapha
A. Galimshina
G. Habert
Bruno Sudret
61
11
0
03 Mar 2022
Bounds in $L^1$ Wasserstein distance on the normal approximation of
  general M-estimators
Bounds in L1L^1L1 Wasserstein distance on the normal approximation of general M-estimators
François Bachoc
M. Fathi
41
0
0
18 Nov 2021
Estimation of the Scale Parameter for a Misspecified Gaussian Process
  Model
Estimation of the Scale Parameter for a Misspecified Gaussian Process Model
Toni Karvonen
50
4
0
06 Oct 2021
Multi-fidelity surrogate modeling for time-series outputs
Multi-fidelity surrogate modeling for time-series outputs
Baptiste Kerleguer
37
4
0
23 Sep 2021
Importance sampling based active learning for parametric seismic
  fragility curve estimation
Importance sampling based active learning for parametric seismic fragility curve estimation
Clement Gauchy
C. Feau
Josselin Garnier
42
4
0
09 Sep 2021
Parameter selection in Gaussian process interpolation: an empirical
  study of selection criteria
Parameter selection in Gaussian process interpolation: an empirical study of selection criteria
S. Petit
Julien Bect
Paul Feliot
E. Vázquez
62
11
0
13 Jul 2021
Robust Prediction Interval estimation for Gaussian Processes by
  Cross-Validation method
Robust Prediction Interval estimation for Gaussian Processes by Cross-Validation method
Naoufal Acharki
A. Bertoncello
Josselin Garnier
25
12
0
09 Jun 2021
Scalable Cross Validation Losses for Gaussian Process Models
Scalable Cross Validation Losses for Gaussian Process Models
M. Jankowiak
Geoff Pleiss
65
6
0
24 May 2021
Lightweight Distributed Gaussian Process Regression for Online Machine
  Learning
Lightweight Distributed Gaussian Process Regression for Online Machine Learning
Zhenyuan Yuan
Minghui Zhu
50
4
0
11 May 2021
Fast calculation of Gaussian Process multiple-fold cross-validation
  residuals and their covariances
Fast calculation of Gaussian Process multiple-fold cross-validation residuals and their covariances
D. Ginsbourger
Cedric Scharer
45
9
0
08 Jan 2021
Asymptotic analysis of maximum likelihood estimation of covariance
  parameters for Gaussian processes: an introduction with proofs
Asymptotic analysis of maximum likelihood estimation of covariance parameters for Gaussian processes: an introduction with proofs
François Bachoc
54
13
0
15 Sep 2020
A two-level Kriging-based approach with active learning for solving
  time-variant risk optimization problems
A two-level Kriging-based approach with active learning for solving time-variant risk optimization problems
H. M. Kroetz
M. Moustapha
A. Beck
Bruno Sudret
AI4CE
31
40
0
08 Jul 2020
Consistency of Empirical Bayes And Kernel Flow For Hierarchical
  Parameter Estimation
Consistency of Empirical Bayes And Kernel Flow For Hierarchical Parameter Estimation
Yifan Chen
H. Owhadi
Andrew M. Stuart
111
31
0
22 May 2020
Cross-validation based adaptive sampling for Gaussian process models
Cross-validation based adaptive sampling for Gaussian process models
Hossein Mohammadi
P. Challenor
D. Williamson
M. Goodfellow
40
12
0
04 May 2020
The ICSCREAM methodology: Identification of penalizing configurations in
  computer experiments using screening and metamodel -- Applications in
  thermal-hydraulics
The ICSCREAM methodology: Identification of penalizing configurations in computer experiments using screening and metamodel -- Applications in thermal-hydraulics
A. M. CEA-DES
Bertrand Iooss
V. Chabridon
59
17
0
08 Apr 2020
Towards new cross-validation-based estimators for Gaussian process
  regression: efficient adjoint computation of gradients
Towards new cross-validation-based estimators for Gaussian process regression: efficient adjoint computation of gradients
S. Petit
Julien Bect
Sébastien Da Veiga
Paul Feliot
E. Vázquez
51
8
0
26 Feb 2020
Deep regularization and direct training of the inner layers of Neural
  Networks with Kernel Flows
Deep regularization and direct training of the inner layers of Neural Networks with Kernel Flows
G. Yoo
H. Owhadi
74
21
0
19 Feb 2020
On the Inference of Applying Gaussian Process Modeling to a
  Deterministic Function
On the Inference of Applying Gaussian Process Modeling to a Deterministic Function
Wei Cao
76
19
0
04 Feb 2020
Maximum likelihood estimation and uncertainty quantification for
  Gaussian process approximation of deterministic functions
Maximum likelihood estimation and uncertainty quantification for Gaussian process approximation of deterministic functions
Toni Karvonen
George Wynne
Filip Tronarp
Chris J. Oates
Simo Särkkä
104
39
0
29 Jan 2020
Parallel cross-validation: a scalable fitting method for Gaussian
  process models
Parallel cross-validation: a scalable fitting method for Gaussian process models
Florian Gerber
D. Nychka
9
9
0
31 Dec 2019
Asymptotic properties of the maximum likelihood and cross validation
  estimators for transformed Gaussian processes
Asymptotic properties of the maximum likelihood and cross validation estimators for transformed Gaussian processes
François Bachoc
José Bétancourt
Reinhard Furrer
T. Klein
45
12
0
25 Nov 2019
Evolving Gaussian Process kernels from elementary mathematical
  expressions
Evolving Gaussian Process kernels from elementary mathematical expressions
Ibai Roman
Roberto Santana
A. Mendiburu
Jose A. Lozano
33
3
0
11 Oct 2019
Adaptive surrogate models for parametric studies
Adaptive surrogate models for parametric studies
J. Fuhg
38
8
0
12 May 2019
Surrogate-assisted reliability-based design optimization: a survey and a
  new general framework
Surrogate-assisted reliability-based design optimization: a survey and a new general framework
M. Moustapha
Bruno Sudret
AI4CE
13
2
0
10 Jan 2019
Gaussian processes with linear operator inequality constraints
Gaussian processes with linear operator inequality constraints
C. Agrell
74
39
0
10 Jan 2019
Extending classical surrogate modelling to high-dimensions through
  supervised dimensionality reduction: a data-driven approach
Extending classical surrogate modelling to high-dimensions through supervised dimensionality reduction: a data-driven approach
C. Lataniotis
S. Marelli
Bruno Sudret
45
67
0
15 Dec 2018
Composite likelihood estimation for a gaussian process under fixed
  domain asymptotics
Composite likelihood estimation for a gaussian process under fixed domain asymptotics
François Bachoc
M. Bevilacqua
D. Velandia
51
12
0
24 Jul 2018
Maximum likelihood estimation for Gaussian processes under inequality
  constraints
Maximum likelihood estimation for Gaussian processes under inequality constraints
François Bachoc
A. Lagnoux
A. F. López-Lopera
87
24
0
10 Apr 2018
Interpolation error of misspecified Gaussian process regression
Interpolation error of misspecified Gaussian process regression
A. Zaytsev
Evgenia Romanenkova
D. Ermilov
8
0
0
26 Mar 2018
Gaussian Processes indexed on the symmetric group: prediction and
  learning
Gaussian Processes indexed on the symmetric group: prediction and learning
François Bachoc
Baptiste Broto
Fabrice Gamboa
Jean-Michel Loubes
38
0
0
16 Mar 2018
Finite-dimensional Gaussian approximation with linear inequality
  constraints
Finite-dimensional Gaussian approximation with linear inequality constraints
A. F. López-Lopera
François Bachoc
N. Durrande
O. Roustant
133
67
0
20 Oct 2017
Replication or exploration? Sequential design for stochastic simulation
  experiments
Replication or exploration? Sequential design for stochastic simulation experiments
M. Binois
Jiangeng Huang
R. Gramacy
M. Ludkovski
73
115
0
09 Oct 2017
The Gaussian process modelling module in UQLab
The Gaussian process modelling module in UQLab
C. Lataniotis
S. Marelli
Bruno Sudret
GP
18
11
0
27 Sep 2017
Hierarchical Kriging for multi-fidelity aero-servo-elastic simulators -
  Application to extreme loads on wind turbines
Hierarchical Kriging for multi-fidelity aero-servo-elastic simulators - Application to extreme loads on wind turbines
Imad Abdallah
S. Marelli
Bruno Sudret
36
32
0
22 Sep 2017
Large Scale Variable Fidelity Surrogate Modeling
Large Scale Variable Fidelity Surrogate Modeling
Evgeny Burnaev
Alexey Zaytsev
AI4CE
85
29
0
12 Jul 2017
Structural reliability analysis for p-boxes using multi-level
  meta-models
Structural reliability analysis for p-boxes using multi-level meta-models
R. Schöbi
Bruno Sudret
28
101
0
10 May 2017
12
Next