Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1301.4320
Cited By
v1
v2
v3 (latest)
Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification
18 January 2013
François Bachoc
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification"
50 / 64 papers shown
Title
Weighted Leave-One-Out Cross Validation
L. Pronzato
M. Rendas
72
0
0
26 May 2025
Adaptive Replication Strategies in Trust-Region-Based Bayesian Optimization of Stochastic Functions
Mickael Binois
Jeffrey Larson
122
0
0
29 Apr 2025
Bayesian Optimisation with Unknown Hyperparameters: Regret Bounds Logarithmically Closer to Optimal
Juliusz Ziomek
Masaki Adachi
Michael A. Osborne
93
1
0
14 Oct 2024
Multifidelity Cross-validation
Sudharshan Ashwin Renganathan
Kade Carlson
85
0
0
01 Jul 2024
Asymptotic analysis for covariance parameter estimation of Gaussian processes with functional inputs
Lucas Reding
A. F. López-Lopera
François Bachoc
70
1
0
26 Apr 2024
Robust and Conjugate Gaussian Process Regression
Matias Altamirano
F. Briol
Jeremias Knoblauch
84
13
0
01 Nov 2023
Comparing Scale Parameter Estimators for Gaussian Process Interpolation with the Brownian Motion Prior: Leave-One-Out Cross Validation and Maximum Likelihood
Masha Naslidnyk
Motonobu Kanagawa
Toni Karvonen
Maren Mahsereci
GP
50
1
0
14 Jul 2023
Provably Efficient Bayesian Optimization with Unknown Gaussian Process Hyperparameter Estimation
Huong Ha
Vu-Linh Nguyen
Hung Tran-The
Hongyu Zhang
Xiuzhen Zhang
Anton Van Den Hengel
73
1
0
12 Jun 2023
A comparison between Bayesian and ordinary kriging based on validation criteria: application to radiological characterisation
Martin Wieskotten
M. Crozet
Bertrand Iooss
C. Lacaux
A. Marrel
45
10
0
12 May 2023
Learning non-stationary and discontinuous functions using clustering, classification and Gaussian process modelling
M. Moustapha
Bruno Sudret
56
9
0
30 Nov 2022
Bayesian Optimization with Conformal Prediction Sets
Samuel Stanton
Wesley J. Maddox
A. Wilson
147
26
0
22 Oct 2022
Gaussian Processes on Distributions based on Regularized Optimal Transport
François Bachoc
Louis Bethune
Alberto González Sanz
Jean-Michel Loubes
GP
OT
66
8
0
12 Oct 2022
Maximum Likelihood Estimation in Gaussian Process Regression is Ill-Posed
Toni Karvonen
Chris J. Oates
GP
78
26
0
17 Mar 2022
Asymptotic Bounds for Smoothness Parameter Estimates in Gaussian Process Interpolation
Toni Karvonen
66
3
0
10 Mar 2022
Multi-objective robust optimization using adaptive surrogate models for problems with mixed continuous-categorical parameters
M. Moustapha
A. Galimshina
G. Habert
Bruno Sudret
61
11
0
03 Mar 2022
Bounds in
L
1
L^1
L
1
Wasserstein distance on the normal approximation of general M-estimators
François Bachoc
M. Fathi
41
0
0
18 Nov 2021
Estimation of the Scale Parameter for a Misspecified Gaussian Process Model
Toni Karvonen
50
4
0
06 Oct 2021
Multi-fidelity surrogate modeling for time-series outputs
Baptiste Kerleguer
37
4
0
23 Sep 2021
Importance sampling based active learning for parametric seismic fragility curve estimation
Clement Gauchy
C. Feau
Josselin Garnier
42
4
0
09 Sep 2021
Parameter selection in Gaussian process interpolation: an empirical study of selection criteria
S. Petit
Julien Bect
Paul Feliot
E. Vázquez
62
11
0
13 Jul 2021
Robust Prediction Interval estimation for Gaussian Processes by Cross-Validation method
Naoufal Acharki
A. Bertoncello
Josselin Garnier
25
12
0
09 Jun 2021
Scalable Cross Validation Losses for Gaussian Process Models
M. Jankowiak
Geoff Pleiss
65
6
0
24 May 2021
Lightweight Distributed Gaussian Process Regression for Online Machine Learning
Zhenyuan Yuan
Minghui Zhu
50
4
0
11 May 2021
Fast calculation of Gaussian Process multiple-fold cross-validation residuals and their covariances
D. Ginsbourger
Cedric Scharer
45
9
0
08 Jan 2021
Asymptotic analysis of maximum likelihood estimation of covariance parameters for Gaussian processes: an introduction with proofs
François Bachoc
54
13
0
15 Sep 2020
A two-level Kriging-based approach with active learning for solving time-variant risk optimization problems
H. M. Kroetz
M. Moustapha
A. Beck
Bruno Sudret
AI4CE
31
40
0
08 Jul 2020
Consistency of Empirical Bayes And Kernel Flow For Hierarchical Parameter Estimation
Yifan Chen
H. Owhadi
Andrew M. Stuart
111
31
0
22 May 2020
Cross-validation based adaptive sampling for Gaussian process models
Hossein Mohammadi
P. Challenor
D. Williamson
M. Goodfellow
40
12
0
04 May 2020
The ICSCREAM methodology: Identification of penalizing configurations in computer experiments using screening and metamodel -- Applications in thermal-hydraulics
A. M. CEA-DES
Bertrand Iooss
V. Chabridon
59
17
0
08 Apr 2020
Towards new cross-validation-based estimators for Gaussian process regression: efficient adjoint computation of gradients
S. Petit
Julien Bect
Sébastien Da Veiga
Paul Feliot
E. Vázquez
51
8
0
26 Feb 2020
Deep regularization and direct training of the inner layers of Neural Networks with Kernel Flows
G. Yoo
H. Owhadi
74
21
0
19 Feb 2020
On the Inference of Applying Gaussian Process Modeling to a Deterministic Function
Wei Cao
76
19
0
04 Feb 2020
Maximum likelihood estimation and uncertainty quantification for Gaussian process approximation of deterministic functions
Toni Karvonen
George Wynne
Filip Tronarp
Chris J. Oates
Simo Särkkä
104
39
0
29 Jan 2020
Parallel cross-validation: a scalable fitting method for Gaussian process models
Florian Gerber
D. Nychka
9
9
0
31 Dec 2019
Asymptotic properties of the maximum likelihood and cross validation estimators for transformed Gaussian processes
François Bachoc
José Bétancourt
Reinhard Furrer
T. Klein
45
12
0
25 Nov 2019
Evolving Gaussian Process kernels from elementary mathematical expressions
Ibai Roman
Roberto Santana
A. Mendiburu
Jose A. Lozano
33
3
0
11 Oct 2019
Adaptive surrogate models for parametric studies
J. Fuhg
38
8
0
12 May 2019
Surrogate-assisted reliability-based design optimization: a survey and a new general framework
M. Moustapha
Bruno Sudret
AI4CE
13
2
0
10 Jan 2019
Gaussian processes with linear operator inequality constraints
C. Agrell
74
39
0
10 Jan 2019
Extending classical surrogate modelling to high-dimensions through supervised dimensionality reduction: a data-driven approach
C. Lataniotis
S. Marelli
Bruno Sudret
45
67
0
15 Dec 2018
Composite likelihood estimation for a gaussian process under fixed domain asymptotics
François Bachoc
M. Bevilacqua
D. Velandia
51
12
0
24 Jul 2018
Maximum likelihood estimation for Gaussian processes under inequality constraints
François Bachoc
A. Lagnoux
A. F. López-Lopera
87
24
0
10 Apr 2018
Interpolation error of misspecified Gaussian process regression
A. Zaytsev
Evgenia Romanenkova
D. Ermilov
8
0
0
26 Mar 2018
Gaussian Processes indexed on the symmetric group: prediction and learning
François Bachoc
Baptiste Broto
Fabrice Gamboa
Jean-Michel Loubes
38
0
0
16 Mar 2018
Finite-dimensional Gaussian approximation with linear inequality constraints
A. F. López-Lopera
François Bachoc
N. Durrande
O. Roustant
133
67
0
20 Oct 2017
Replication or exploration? Sequential design for stochastic simulation experiments
M. Binois
Jiangeng Huang
R. Gramacy
M. Ludkovski
73
115
0
09 Oct 2017
The Gaussian process modelling module in UQLab
C. Lataniotis
S. Marelli
Bruno Sudret
GP
18
11
0
27 Sep 2017
Hierarchical Kriging for multi-fidelity aero-servo-elastic simulators - Application to extreme loads on wind turbines
Imad Abdallah
S. Marelli
Bruno Sudret
36
32
0
22 Sep 2017
Large Scale Variable Fidelity Surrogate Modeling
Evgeny Burnaev
Alexey Zaytsev
AI4CE
85
29
0
12 Jul 2017
Structural reliability analysis for p-boxes using multi-level meta-models
R. Schöbi
Bruno Sudret
28
101
0
10 May 2017
1
2
Next