ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1306.6430
  4. Cited By
A General Framework for Updating Belief Distributions
v1v2 (latest)

A General Framework for Updating Belief Distributions

27 June 2013
Pier Giovanni Bissiri
Chris Holmes
S. Walker
ArXiv (abs)PDFHTML

Papers citing "A General Framework for Updating Belief Distributions"

50 / 204 papers shown
Title
Addressing the Inconsistency in Bayesian Deep Learning via Generalized Laplace Approximation
Addressing the Inconsistency in Bayesian Deep Learning via Generalized Laplace Approximation
Yinsong Chen
Samson S. Yu
Zhong Li
Chee Peng Lim
BDL
78
0
0
01 Jul 2025
Variational Deep Learning via Implicit Regularization
Variational Deep Learning via Implicit Regularization
Jonathan Wenger
Beau Coker
Juraj Marusic
John P. Cunningham
OODUQCVBDL
56
0
0
26 May 2025
High-dimensional Bayesian Tobit regression for censored response with Horseshoe prior
High-dimensional Bayesian Tobit regression for censored response with Horseshoe prior
Tien Mai
59
2
0
13 May 2025
Decision Making under Model Misspecification: DRO with Robust Bayesian Ambiguity Sets
Decision Making under Model Misspecification: DRO with Robust Bayesian Ambiguity Sets
Charita Dellaporta
Patrick O'Hara
Theodoros Damoulas
117
0
0
06 May 2025
Structural Inference: Interpreting Small Language Models with Susceptibilities
Structural Inference: Interpreting Small Language Models with Susceptibilities
Garrett Baker
George Wang
Jesse Hoogland
Daniel Murfet
AAML
157
0
0
25 Apr 2025
A Weighted-likelihood framework for class imbalance in Bayesian prediction models
A Weighted-likelihood framework for class imbalance in Bayesian prediction models
Stanley E. Lazic
82
0
0
23 Apr 2025
Correcting Mode Proportion Bias in Generalized Bayesian Inference via a Weighted Kernel Stein Discrepancy
Elham Afzali
Saman Muthukumarana
Liqun Wang
87
0
0
03 Mar 2025
AI-Powered Bayesian Inference
AI-Powered Bayesian Inference
Veronika Rockova
Sean O'Hagan
461
0
0
26 Feb 2025
Misspecification-robust likelihood-free inference in high dimensions
Misspecification-robust likelihood-free inference in high dimensions
Owen Thomas
Raquel Sá-Leao
H. Lencastre
Samuel Kaski
J. Corander
Henri Pesonen
242
9
0
17 Feb 2025
Test-Time Alignment via Hypothesis Reweighting
Test-Time Alignment via Hypothesis Reweighting
Yoonho Lee
Jonathan Williams
Henrik Marklund
Archit Sharma
E. Mitchell
Anikait Singh
Chelsea Finn
141
5
0
11 Dec 2024
Expert-elicitation method for non-parametric joint priors using normalizing flows
Expert-elicitation method for non-parametric joint priors using normalizing flows
F. Bockting
Stefan T. Radev
Paul-Christian Bürkner
BDL
209
2
0
24 Nov 2024
Streaming Bayes GFlowNets
Streaming Bayes GFlowNets
Tiago da Silva
Daniel Augusto R. M. A. de Souza
Diego Mesquita
BDL
155
2
0
08 Nov 2024
MAP: Multi-Human-Value Alignment Palette
MAP: Multi-Human-Value Alignment Palette
Xinran Wang
Qi Le
A. N. Ahmed
Enmao Diao
Yi Zhou
Nathalie Baracaldo
Jie Ding
Ali Anwar
56
5
0
24 Oct 2024
Asymptotics for parametric martingale posteriors
Asymptotics for parametric martingale posteriors
Edwin Fong
Andrew Yiu
54
0
0
23 Oct 2024
High-dimensional prediction for count response via sparse exponential
  weights
High-dimensional prediction for count response via sparse exponential weights
The Tien Mai
69
0
0
20 Oct 2024
Predictive variational inference: Learn the predictively optimal posterior distribution
Predictive variational inference: Learn the predictively optimal posterior distribution
Jinlin Lai
Yuling Yao
BDL
94
0
0
18 Oct 2024
Spectral Representations for Accurate Causal Uncertainty Quantification
  with Gaussian Processes
Spectral Representations for Accurate Causal Uncertainty Quantification with Gaussian Processes
Hugh Dance
Peter Orbanz
Arthur Gretton
CML
61
1
0
18 Oct 2024
Generating Origin-Destination Matrices in Neural Spatial Interaction
  Models
Generating Origin-Destination Matrices in Neural Spatial Interaction Models
Ioannis Zachos
Mark Girolami
Theodoros Damoulas
58
1
0
09 Oct 2024
Temperature Optimization for Bayesian Deep Learning
Temperature Optimization for Bayesian Deep Learning
Kenyon Ng
Chris van der Heide
Liam Hodgkinson
Susan Wei
BDL
121
0
0
08 Oct 2024
Differentiation and Specialization of Attention Heads via the Refined
  Local Learning Coefficient
Differentiation and Specialization of Attention Heads via the Refined Local Learning Coefficient
George Wang
Jesse Hoogland
Stan van Wingerden
Zach Furman
Daniel Murfet
OffRL
86
9
0
03 Oct 2024
A sparse PAC-Bayesian approach for high-dimensional quantile prediction
A sparse PAC-Bayesian approach for high-dimensional quantile prediction
The Tien Mai
74
3
0
03 Sep 2024
Dataset Distillation from First Principles: Integrating Core Information
  Extraction and Purposeful Learning
Dataset Distillation from First Principles: Integrating Core Information Extraction and Purposeful Learning
Vyacheslav Kungurtsev
Yuanfang Peng
Jianyang Gu
Saeed Vahidian
Anthony Quinn
Fadwa Idlahcen
Yiran Chen
FedMLDD
116
2
0
02 Sep 2024
Scalable Bayesian Clustering for Integrative Analysis of Multi-View Data
Scalable Bayesian Clustering for Integrative Analysis of Multi-View Data
Rafael Cabral
Maria de Iorio
Andrew Harris
34
0
0
30 Aug 2024
Loss-based Bayesian Sequential Prediction of Value at Risk with a
  Long-Memory and Non-linear Realized Volatility Model
Loss-based Bayesian Sequential Prediction of Value at Risk with a Long-Memory and Non-linear Realized Volatility Model
Rangika Peiris
Minh-Ngoc Tran
Chao Wang
Richard Gerlach
25
0
0
24 Aug 2024
Predictive performance of power posteriors
Predictive performance of power posteriors
Yann McLatchie
Edwin Fong
David T. Frazier
Jeremias Knoblauch
61
2
0
16 Aug 2024
Randomized Transport Plans via Hierarchical Fully Probabilistic Design
Randomized Transport Plans via Hierarchical Fully Probabilistic Design
Sarah Boufelja
Anthony Quinn
Robert Shorten
OT
120
0
0
04 Aug 2024
Concentration of a sparse Bayesian model with Horseshoe prior in
  estimating high-dimensional precision matrix
Concentration of a sparse Bayesian model with Horseshoe prior in estimating high-dimensional precision matrix
The Tien Mai
67
4
0
20 Jun 2024
Approximation-Aware Bayesian Optimization
Approximation-Aware Bayesian Optimization
Natalie Maus
Kyurae Kim
Geoff Pleiss
David Eriksson
John P. Cunningham
Jacob R. Gardner
67
3
0
06 Jun 2024
Adaptive posterior concentration rates for sparse high-dimensional
  linear regression with random design and unknown error variance
Adaptive posterior concentration rates for sparse high-dimensional linear regression with random design and unknown error variance
The Tien Mai
66
0
0
29 May 2024
Generalised Bayes Linear Inference
Generalised Bayes Linear Inference
L. Astfalck
Cassandra Bird
Daniel Williamson
AI4CE
62
0
0
23 May 2024
Addressing Misspecification in Simulation-based Inference through Data-driven Calibration
Addressing Misspecification in Simulation-based Inference through Data-driven Calibration
Antoine Wehenkel
Juan L. Gamella
Ozan Sener
Jens Behrmann
Guillermo Sapiro
Marco Cuturi
J. Jacobsen
UQLM
143
11
0
14 May 2024
Outlier-robust Kalman Filtering through Generalised Bayes
Outlier-robust Kalman Filtering through Generalised Bayes
Gerardo Duran-Martín
Matias Altamirano
Alexander Y. Shestopaloff
Leandro Sánchez-Betancourt
Jeremias Knoblauch
Matt Jones
F. Briol
Kevin P. Murphy
138
11
0
09 May 2024
Weighted Particle-Based Optimization for Efficient Generalized Posterior
  Calibration
Weighted Particle-Based Optimization for Efficient Generalized Posterior Calibration
Masahiro Tanaka
93
0
0
08 May 2024
On properties of fractional posterior in generalized reduced-rank
  regression
On properties of fractional posterior in generalized reduced-rank regression
The Tien Mai
88
2
0
27 Apr 2024
Generalized Posterior Calibration via Sequential Monte Carlo Sampler
Generalized Posterior Calibration via Sequential Monte Carlo Sampler
Masahiro Tanaka
100
2
0
25 Apr 2024
On Neighbourhood Cross Validation
On Neighbourhood Cross Validation
Simon N. Wood
21
1
0
25 Apr 2024
Distributed Fractional Bayesian Learning for Adaptive Optimization
Distributed Fractional Bayesian Learning for Adaptive Optimization
Yaqun Yang
Jinlong Lei
Guanghui Wen
Yiguang Hong
133
0
0
17 Apr 2024
Concentration properties of fractional posterior in 1-bit matrix
  completion
Concentration properties of fractional posterior in 1-bit matrix completion
The Tien Mai
58
5
0
13 Apr 2024
On high-dimensional classification by sparse generalized Bayesian
  logistic regression
On high-dimensional classification by sparse generalized Bayesian logistic regression
The Tien Mai
73
2
0
19 Mar 2024
Is Epistemic Uncertainty Faithfully Represented by Evidential Deep
  Learning Methods?
Is Epistemic Uncertainty Faithfully Represented by Evidential Deep Learning Methods?
Mira Jürgens
Nis Meinert
Viktor Bengs
Eyke Hüllermeier
Willem Waegeman
UQCVUDPEREDLBDL
109
15
0
14 Feb 2024
Sourcerer: Sample-based Maximum Entropy Source Distribution Estimation
Sourcerer: Sample-based Maximum Entropy Source Distribution Estimation
Julius Vetter
Guy Moss
Cornelius Schroder
Richard Gao
Jakob H. Macke
94
5
0
12 Feb 2024
Are Uncertainty Quantification Capabilities of Evidential Deep Learning
  a Mirage?
Are Uncertainty Quantification Capabilities of Evidential Deep Learning a Mirage?
Maohao Shen
J. Jon Ryu
Soumya Ghosh
Yuheng Bu
P. Sattigeri
Subhro Das
Greg Wornell
EDLBDLUQCV
74
3
0
09 Feb 2024
Bootstrap Your Own Variance
Bootstrap Your Own Variance
Polina Turishcheva
Jason Ramapuram
Sinead Williamson
Dan Busbridge
Eeshan Gunesh Dhekane
Russ Webb
UQCV
66
0
0
06 Dec 2023
A General Space of Belief Updates for Model Misspecification in Bayesian
  Networks
A General Space of Belief Updates for Model Misspecification in Bayesian Networks
Tianjin Li
57
0
0
09 Nov 2023
Reproducible Parameter Inference Using Bagged Posteriors
Reproducible Parameter Inference Using Bagged Posteriors
Jonathan H. Huggins
Jeffrey W. Miller
UQCV
128
1
0
03 Nov 2023
ABC-based Forecasting in State Space Models
ABC-based Forecasting in State Space Models
Chaya Weerasinghe
Rubén Loaiza-Maya
G. Martin
David T. Frazier
47
1
0
02 Nov 2023
Robust and Conjugate Gaussian Process Regression
Robust and Conjugate Gaussian Process Regression
Matias Altamirano
F. Briol
Jeremias Knoblauch
87
13
0
01 Nov 2023
A Risk Management Perspective on Statistical Estimation and Generalized
  Variational Inference
A Risk Management Perspective on Statistical Estimation and Generalized Variational Inference
Aurya Javeed
D. Kouri
T. Surowiec
80
2
0
26 Oct 2023
Sequential Gibbs Posteriors with Applications to Principal Component
  Analysis
Sequential Gibbs Posteriors with Applications to Principal Component Analysis
Steven Winter
Omar Melikechi
David B. Dunson
74
2
0
19 Oct 2023
An Introduction to the Calibration of Computer Models
An Introduction to the Calibration of Computer Models
Richard D. Wilkinson
Christopher W. Lanyon
52
0
0
13 Oct 2023
12345
Next