Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1306.6430
Cited By
v1
v2 (latest)
A General Framework for Updating Belief Distributions
27 June 2013
Pier Giovanni Bissiri
Chris Holmes
S. Walker
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A General Framework for Updating Belief Distributions"
50 / 204 papers shown
Title
Addressing the Inconsistency in Bayesian Deep Learning via Generalized Laplace Approximation
Yinsong Chen
Samson S. Yu
Zhong Li
Chee Peng Lim
BDL
78
0
0
01 Jul 2025
Variational Deep Learning via Implicit Regularization
Jonathan Wenger
Beau Coker
Juraj Marusic
John P. Cunningham
OOD
UQCV
BDL
56
0
0
26 May 2025
High-dimensional Bayesian Tobit regression for censored response with Horseshoe prior
Tien Mai
61
2
0
13 May 2025
Decision Making under Model Misspecification: DRO with Robust Bayesian Ambiguity Sets
Charita Dellaporta
Patrick O'Hara
Theodoros Damoulas
117
0
0
06 May 2025
Structural Inference: Interpreting Small Language Models with Susceptibilities
Garrett Baker
George Wang
Jesse Hoogland
Daniel Murfet
AAML
157
1
0
25 Apr 2025
A Weighted-likelihood framework for class imbalance in Bayesian prediction models
Stanley E. Lazic
82
0
0
23 Apr 2025
Correcting Mode Proportion Bias in Generalized Bayesian Inference via a Weighted Kernel Stein Discrepancy
Elham Afzali
Saman Muthukumarana
Liqun Wang
87
0
0
03 Mar 2025
AI-Powered Bayesian Inference
Veronika Rockova
Sean O'Hagan
461
0
0
26 Feb 2025
Misspecification-robust likelihood-free inference in high dimensions
Owen Thomas
Raquel Sá-Leao
H. Lencastre
Samuel Kaski
J. Corander
Henri Pesonen
242
9
0
17 Feb 2025
Test-Time Alignment via Hypothesis Reweighting
Yoonho Lee
Jonathan Williams
Henrik Marklund
Archit Sharma
E. Mitchell
Anikait Singh
Chelsea Finn
141
5
0
11 Dec 2024
Expert-elicitation method for non-parametric joint priors using normalizing flows
F. Bockting
Stefan T. Radev
Paul-Christian Bürkner
BDL
209
2
0
24 Nov 2024
Streaming Bayes GFlowNets
Tiago da Silva
Daniel Augusto R. M. A. de Souza
Diego Mesquita
BDL
158
2
0
08 Nov 2024
MAP: Multi-Human-Value Alignment Palette
Xinran Wang
Qi Le
A. N. Ahmed
Enmao Diao
Yi Zhou
Nathalie Baracaldo
Jie Ding
Ali Anwar
56
5
0
24 Oct 2024
Asymptotics for parametric martingale posteriors
Edwin Fong
Andrew Yiu
54
0
0
23 Oct 2024
High-dimensional prediction for count response via sparse exponential weights
The Tien Mai
71
0
0
20 Oct 2024
Predictive variational inference: Learn the predictively optimal posterior distribution
Jinlin Lai
Yuling Yao
BDL
94
0
0
18 Oct 2024
Spectral Representations for Accurate Causal Uncertainty Quantification with Gaussian Processes
Hugh Dance
Peter Orbanz
Arthur Gretton
CML
61
1
0
18 Oct 2024
Generating Origin-Destination Matrices in Neural Spatial Interaction Models
Ioannis Zachos
Mark Girolami
Theodoros Damoulas
58
1
0
09 Oct 2024
Temperature Optimization for Bayesian Deep Learning
Kenyon Ng
Chris van der Heide
Liam Hodgkinson
Susan Wei
BDL
124
0
0
08 Oct 2024
Differentiation and Specialization of Attention Heads via the Refined Local Learning Coefficient
George Wang
Jesse Hoogland
Stan van Wingerden
Zach Furman
Daniel Murfet
OffRL
86
9
0
03 Oct 2024
A sparse PAC-Bayesian approach for high-dimensional quantile prediction
The Tien Mai
74
3
0
03 Sep 2024
Dataset Distillation from First Principles: Integrating Core Information Extraction and Purposeful Learning
Vyacheslav Kungurtsev
Yuanfang Peng
Jianyang Gu
Saeed Vahidian
Anthony Quinn
Fadwa Idlahcen
Yiran Chen
FedML
DD
116
2
0
02 Sep 2024
Scalable Bayesian Clustering for Integrative Analysis of Multi-View Data
Rafael Cabral
Maria de Iorio
Andrew Harris
34
0
0
30 Aug 2024
Loss-based Bayesian Sequential Prediction of Value at Risk with a Long-Memory and Non-linear Realized Volatility Model
Rangika Peiris
Minh-Ngoc Tran
Chao Wang
Richard Gerlach
25
0
0
24 Aug 2024
Predictive performance of power posteriors
Yann McLatchie
Edwin Fong
David T. Frazier
Jeremias Knoblauch
61
2
0
16 Aug 2024
Randomized Transport Plans via Hierarchical Fully Probabilistic Design
Sarah Boufelja
Anthony Quinn
Robert Shorten
OT
120
0
0
04 Aug 2024
Concentration of a sparse Bayesian model with Horseshoe prior in estimating high-dimensional precision matrix
The Tien Mai
67
4
0
20 Jun 2024
Approximation-Aware Bayesian Optimization
Natalie Maus
Kyurae Kim
Geoff Pleiss
David Eriksson
John P. Cunningham
Jacob R. Gardner
67
3
0
06 Jun 2024
Adaptive posterior concentration rates for sparse high-dimensional linear regression with random design and unknown error variance
The Tien Mai
66
0
0
29 May 2024
Generalised Bayes Linear Inference
L. Astfalck
Cassandra Bird
Daniel Williamson
AI4CE
62
0
0
23 May 2024
Addressing Misspecification in Simulation-based Inference through Data-driven Calibration
Antoine Wehenkel
Juan L. Gamella
Ozan Sener
Jens Behrmann
Guillermo Sapiro
Marco Cuturi
J. Jacobsen
UQLM
143
11
0
14 May 2024
Outlier-robust Kalman Filtering through Generalised Bayes
Gerardo Duran-Martín
Matias Altamirano
Alexander Y. Shestopaloff
Leandro Sánchez-Betancourt
Jeremias Knoblauch
Matt Jones
F. Briol
Kevin P. Murphy
138
11
0
09 May 2024
Weighted Particle-Based Optimization for Efficient Generalized Posterior Calibration
Masahiro Tanaka
93
0
0
08 May 2024
On properties of fractional posterior in generalized reduced-rank regression
The Tien Mai
88
2
0
27 Apr 2024
Generalized Posterior Calibration via Sequential Monte Carlo Sampler
Masahiro Tanaka
100
2
0
25 Apr 2024
On Neighbourhood Cross Validation
Simon N. Wood
21
1
0
25 Apr 2024
Distributed Fractional Bayesian Learning for Adaptive Optimization
Yaqun Yang
Jinlong Lei
Guanghui Wen
Yiguang Hong
133
0
0
17 Apr 2024
Concentration properties of fractional posterior in 1-bit matrix completion
The Tien Mai
58
5
0
13 Apr 2024
On high-dimensional classification by sparse generalized Bayesian logistic regression
The Tien Mai
73
2
0
19 Mar 2024
Is Epistemic Uncertainty Faithfully Represented by Evidential Deep Learning Methods?
Mira Jürgens
Nis Meinert
Viktor Bengs
Eyke Hüllermeier
Willem Waegeman
UQCV
UD
PER
EDL
BDL
111
15
0
14 Feb 2024
Sourcerer: Sample-based Maximum Entropy Source Distribution Estimation
Julius Vetter
Guy Moss
Cornelius Schroder
Richard Gao
Jakob H. Macke
94
5
0
12 Feb 2024
Are Uncertainty Quantification Capabilities of Evidential Deep Learning a Mirage?
Maohao Shen
J. Jon Ryu
Soumya Ghosh
Yuheng Bu
P. Sattigeri
Subhro Das
Greg Wornell
EDL
BDL
UQCV
74
3
0
09 Feb 2024
Bootstrap Your Own Variance
Polina Turishcheva
Jason Ramapuram
Sinead Williamson
Dan Busbridge
Eeshan Gunesh Dhekane
Russ Webb
UQCV
66
0
0
06 Dec 2023
A General Space of Belief Updates for Model Misspecification in Bayesian Networks
Tianjin Li
57
0
0
09 Nov 2023
Reproducible Parameter Inference Using Bagged Posteriors
Jonathan H. Huggins
Jeffrey W. Miller
UQCV
128
1
0
03 Nov 2023
ABC-based Forecasting in State Space Models
Chaya Weerasinghe
Rubén Loaiza-Maya
G. Martin
David T. Frazier
47
1
0
02 Nov 2023
Robust and Conjugate Gaussian Process Regression
Matias Altamirano
F. Briol
Jeremias Knoblauch
87
13
0
01 Nov 2023
A Risk Management Perspective on Statistical Estimation and Generalized Variational Inference
Aurya Javeed
D. Kouri
T. Surowiec
80
2
0
26 Oct 2023
Sequential Gibbs Posteriors with Applications to Principal Component Analysis
Steven Winter
Omar Melikechi
David B. Dunson
74
2
0
19 Oct 2023
An Introduction to the Calibration of Computer Models
Richard D. Wilkinson
Christopher W. Lanyon
52
0
0
13 Oct 2023
1
2
3
4
5
Next