Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1308.3558
Cited By
Fast Stochastic Alternating Direction Method of Multipliers
16 August 2013
Leon Wenliang Zhong
James T. Kwok
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Fast Stochastic Alternating Direction Method of Multipliers"
34 / 34 papers shown
Title
Preconditioned Inexact Stochastic ADMM for Deep Model
Shenglong Zhou
Ouya Wang
Ziyan Luo
Yongxu Zhu
Geoffrey Ye Li
86
0
0
15 Feb 2025
A General Continuous-Time Formulation of Stochastic ADMM and Its Variants
Chris Junchi Li
69
0
0
22 Apr 2024
Privacy Amplification by Iteration for ADMM with (Strongly) Convex Objective Functions
T.-H. Hubert Chan
Hao Xie
Mengshi Zhao
67
1
0
14 Dec 2023
Regularization in network optimization via trimmed stochastic gradient descent with noisy label
Kensuke Nakamura
Bong-Soo Sohn
Kyoung-Jae Won
Byung-Woo Hong
NoLa
51
0
0
21 Dec 2020
Variance-Reduced Methods for Machine Learning
Robert Mansel Gower
Mark Schmidt
Francis R. Bach
Peter Richtárik
100
117
0
02 Oct 2020
Faster Stochastic Alternating Direction Method of Multipliers for Nonconvex Optimization
Feihu Huang
Songcan Chen
Heng-Chiao Huang
38
38
0
04 Aug 2020
P-ADMMiRNN: Training RNN with Stable Convergence via An Efficient and Paralleled ADMM Approach
Yu Tang
Zhigang Kan
Dequan Sun
Jingjing Xiao
Zhiquan Lai
Linbo Qiao
Dongsheng Li
30
0
0
10 Jun 2020
Distributed Machine Learning for Predictive Analytics in Mobile Edge Computing Based IoT Environments
Prabath Abeysekara
Hai Dong
•. A. K. Qin
111
5
0
07 Jun 2020
Scalable Plug-and-Play ADMM with Convergence Guarantees
Yu Sun
Zihui Wu
Xiaojian Xu
B. Wohlberg
Ulugbek S. Kamilov
BDL
91
76
0
05 Jun 2020
Distributed Stochastic Nonconvex Optimization and Learning based on Successive Convex Approximation
P. Lorenzo
Simone Scardapane
53
2
0
30 Apr 2020
Stochastic batch size for adaptive regularization in deep network optimization
Kensuke Nakamura
Stefano Soatto
Byung-Woo Hong
ODL
44
6
0
14 Apr 2020
Stochastic Modified Equations for Continuous Limit of Stochastic ADMM
Xiang Zhou
Huizhuo Yuan
C. J. Li
Qingyun Sun
121
6
0
07 Mar 2020
Adaptive Weight Decay for Deep Neural Networks
Kensuke Nakamura
Byung-Woo Hong
63
43
0
21 Jul 2019
Image Super-Resolution via RL-CSC: When Residual Learning Meets Convolutional Sparse Coding
Menglei Zhang
Zhou Liu
Lei Yu
31
5
0
31 Dec 2018
Mini-Batch Stochastic ADMMs for Nonconvex Nonsmooth Optimization
Feihu Huang
Songcan Chen
69
21
0
08 Feb 2018
A Distributed Framework for the Construction of Transport Maps
Diego A. Mesa
Justin Tantiongloc
Marcela Mendoza
Todd P. Coleman
26
0
0
25 Jan 2018
On the Iteration Complexity Analysis of Stochastic Primal-Dual Hybrid Gradient Approach with High Probability
Linbo Qiao
Tianyi Lin
Qi Qin
Xicheng Lu
33
2
0
22 Jan 2018
Scalable Peaceman-Rachford Splitting Method with Proximal Terms
Sen Na
Mingyuan Ma
Guangju Peng
21
2
0
14 Nov 2017
Fast Convolutional Sparse Coding in the Dual Domain
Lama Affara
Guohao Li
Peter Wonka
20
0
0
27 Sep 2017
Convolutional Dictionary Learning: A Comparative Review and New Algorithms
Cristina Garcia-Cardona
B. Wohlberg
109
178
0
09 Sep 2017
Stochastic Primal-Dual Proximal ExtraGradient Descent for Compositely Regularized Optimization
Tianyi Lin
Linbo Qiao
Teng Zhang
Jiashi Feng
Bofeng Zhang
28
8
0
20 Aug 2017
Accelerated Variance Reduced Stochastic ADMM
Yuanyuan Liu
Fanhua Shang
James Cheng
69
41
0
11 Jul 2017
Convolutional Dictionary Learning: Acceleration and Convergence
Il Yong Chun
Jeffrey A. Fessler
96
94
0
03 Jul 2017
Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Applications
A. Chambolle
Matthias Joachim Ehrhardt
Peter Richtárik
Carola-Bibiane Schönlieb
104
187
0
15 Jun 2017
Larger is Better: The Effect of Learning Rates Enjoyed by Stochastic Optimization with Progressive Variance Reduction
Fanhua Shang
21
1
0
17 Apr 2017
Sparse Learning with Semi-Proximal-Based Strictly Contractive Peaceman-Rachford Splitting Method
Sen Na
Cho-Jui Hsieh
8
4
0
30 Dec 2016
Stochastic Alternating Direction Method of Multipliers with Variance Reduction for Nonconvex Optimization
Feihu Huang
Songcan Chen
Zhaosong Lu
86
15
0
10 Oct 2016
Stochastic Variance-Reduced ADMM
Shuai Zheng
James T. Kwok
96
60
0
24 Apr 2016
Relaxed Linearized Algorithms for Faster X-Ray CT Image Reconstruction
Hung Nien
Jeffrey A. Fessler
56
41
0
14 Dec 2015
Scalable Stochastic Alternating Direction Method of Multipliers
Shen-Yi Zhao
Wu-Jun Li
Zhi Zhou
68
21
0
12 Feb 2015
Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization
Yuchen Zhang
Xiao Lin
119
265
0
10 Sep 2014
Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning
Julien Mairal
180
319
0
18 Feb 2014
Adaptive Stochastic Alternating Direction Method of Multipliers
P. Zhao
Jinwei Yang
Tong Zhang
Ping Li
88
19
0
16 Dec 2013
Minimizing Finite Sums with the Stochastic Average Gradient
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
336
1,251
0
10 Sep 2013
1