Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1309.2388
Cited By
Minimizing Finite Sums with the Stochastic Average Gradient
10 September 2013
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Minimizing Finite Sums with the Stochastic Average Gradient"
50 / 504 papers shown
Title
Large-scale Kernel Methods and Applications to Lifelong Robot Learning
Raffaello Camoriano
42
1
0
11 Dec 2019
Decentralized Multi-Agent Reinforcement Learning with Networked Agents: Recent Advances
Kaipeng Zhang
Zhuoran Yang
Tamer Basar
6
67
0
09 Dec 2019
Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms
Kaipeng Zhang
Zhuoran Yang
Tamer Basar
63
1,184
0
24 Nov 2019
Exponential Convergence Rates of Classification Errors on Learning with SGD and Random Features
Shingo Yashima
Atsushi Nitanda
Taiji Suzuki
14
2
0
13 Nov 2019
Stochastic DCA for minimizing a large sum of DC functions with application to Multi-class Logistic Regression
Hoai An Le Thi
L. Minh
Phan Duy Nhat
Bach Tran
33
24
0
10 Nov 2019
Mixing of Stochastic Accelerated Gradient Descent
Peiyuan Zhang
Hadi Daneshmand
Thomas Hofmann
9
0
0
31 Oct 2019
Katyusha Acceleration for Convex Finite-Sum Compositional Optimization
Yibo Xu
Yangyang Xu
76
13
0
24 Oct 2019
The Practicality of Stochastic Optimization in Imaging Inverse Problems
Junqi Tang
K. Egiazarian
Mohammad Golbabaee
Mike Davies
27
30
0
22 Oct 2019
A Stochastic Extra-Step Quasi-Newton Method for Nonsmooth Nonconvex Optimization
Minghan Yang
Andre Milzarek
Zaiwen Wen
Tong Zhang
ODL
17
36
0
21 Oct 2019
Improving the convergence of SGD through adaptive batch sizes
Scott Sievert
Zachary B. Charles
ODL
25
8
0
18 Oct 2019
Principal Component Projection and Regression in Nearly Linear Time through Asymmetric SVRG
Yujia Jin
Aaron Sidford
17
7
0
15 Oct 2019
SCAFFOLD: Stochastic Controlled Averaging for Federated Learning
Sai Praneeth Karimireddy
Satyen Kale
M. Mohri
Sashank J. Reddi
Sebastian U. Stich
A. Suresh
FedML
28
343
0
14 Oct 2019
General Proximal Incremental Aggregated Gradient Algorithms: Better and Novel Results under General Scheme
Tao Sun
Yuejiao Sun
Dongsheng Li
Qing Liao
35
16
0
11 Oct 2019
Fast and Furious Convergence: Stochastic Second Order Methods under Interpolation
S. Meng
Sharan Vaswani
I. Laradji
Mark Schmidt
Simon Lacoste-Julien
21
32
0
11 Oct 2019
Randomized Iterative Methods for Linear Systems: Momentum, Inexactness and Gossip
Nicolas Loizou
27
5
0
26 Sep 2019
A Stochastic Proximal Point Algorithm for Saddle-Point Problems
Luo Luo
Cheng Chen
Yujun Li
Guangzeng Xie
Zhihua Zhang
16
16
0
13 Sep 2019
GADMM: Fast and Communication Efficient Framework for Distributed Machine Learning
Anis Elgabli
Jihong Park
Amrit Singh Bedi
M. Bennis
Vaneet Aggarwal
FedML
4
82
0
30 Aug 2019
Linear Convergence of Adaptive Stochastic Gradient Descent
Yuege Xie
Xiaoxia Wu
Rachel A. Ward
6
44
0
28 Aug 2019
Convex Programming for Estimation in Nonlinear Recurrent Models
S. Bahmani
Justin Romberg
9
10
0
26 Aug 2019
A General Analysis Framework of Lower Complexity Bounds for Finite-Sum Optimization
Guangzeng Xie
Luo Luo
Zhihua Zhang
14
4
0
22 Aug 2019
Towards Better Generalization: BP-SVRG in Training Deep Neural Networks
Hao Jin
Dachao Lin
Zhihua Zhang
ODL
21
2
0
18 Aug 2019
A Review of Cooperative Multi-Agent Deep Reinforcement Learning
Afshin Oroojlooyjadid
Davood Hajinezhad
56
413
0
11 Aug 2019
Trajectory-wise Control Variates for Variance Reduction in Policy Gradient Methods
Ching-An Cheng
Xinyan Yan
Byron Boots
30
22
0
08 Aug 2019
A Data Efficient and Feasible Level Set Method for Stochastic Convex Optimization with Expectation Constraints
Qihang Lin
Selvaprabu Nadarajah
Negar Soheili
Tianbao Yang
27
13
0
07 Aug 2019
An introduction to decentralized stochastic optimization with gradient tracking
Ran Xin
S. Kar
U. Khan
14
10
0
23 Jul 2019
Stochastic algorithms with geometric step decay converge linearly on sharp functions
Damek Davis
Dmitriy Drusvyatskiy
Vasileios Charisopoulos
51
26
0
22 Jul 2019
A Hybrid Stochastic Optimization Framework for Stochastic Composite Nonconvex Optimization
Quoc Tran-Dinh
Nhan H. Pham
T. Dzung
Lam M. Nguyen
27
49
0
08 Jul 2019
Variance Reduction for Matrix Games
Y. Carmon
Yujia Jin
Aaron Sidford
Kevin Tian
21
63
0
03 Jul 2019
A Unifying Framework for Variance Reduction Algorithms for Finding Zeroes of Monotone Operators
Xun Zhang
W. Haskell
Z. Ye
25
3
0
22 Jun 2019
A Survey of Optimization Methods from a Machine Learning Perspective
Shiliang Sun
Zehui Cao
Han Zhu
Jing Zhao
22
549
0
17 Jun 2019
ADASS: Adaptive Sample Selection for Training Acceleration
Shen-Yi Zhao
Hao Gao
Wu-Jun Li
19
0
0
11 Jun 2019
Variance-reduced
Q
Q
Q
-learning is minimax optimal
Martin J. Wainwright
OffRL
20
89
0
11 Jun 2019
Reducing the variance in online optimization by transporting past gradients
Sébastien M. R. Arnold
Pierre-Antoine Manzagol
Reza Babanezhad
Ioannis Mitliagkas
Nicolas Le Roux
26
28
0
08 Jun 2019
Scaling Up Quasi-Newton Algorithms: Communication Efficient Distributed SR1
Majid Jahani
M. Nazari
S. Rusakov
A. Berahas
Martin Takávc
28
14
0
30 May 2019
Convergence of Distributed Stochastic Variance Reduced Methods without Sampling Extra Data
Shicong Cen
Huishuai Zhang
Yuejie Chi
Wei-neng Chen
Tie-Yan Liu
FedML
14
27
0
29 May 2019
A unified variance-reduced accelerated gradient method for convex optimization
Guanghui Lan
Zhize Li
Yi Zhou
16
61
0
29 May 2019
Why gradient clipping accelerates training: A theoretical justification for adaptivity
Jiaming Zhang
Tianxing He
S. Sra
Ali Jadbabaie
30
446
0
28 May 2019
An Accelerated Decentralized Stochastic Proximal Algorithm for Finite Sums
Hadrien Hendrikx
Francis R. Bach
Laurent Massoulie
24
31
0
27 May 2019
Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates
Sharan Vaswani
Aaron Mishkin
I. Laradji
Mark Schmidt
Gauthier Gidel
Simon Lacoste-Julien
ODL
41
205
0
24 May 2019
LR-GLM: High-Dimensional Bayesian Inference Using Low-Rank Data Approximations
Brian L. Trippe
Jonathan H. Huggins
Raj Agrawal
Tamara Broderick
BDL
22
9
0
17 May 2019
Hybrid Stochastic Gradient Descent Algorithms for Stochastic Nonconvex Optimization
Quoc Tran-Dinh
Nhan H. Pham
Dzung Phan
Lam M. Nguyen
33
54
0
15 May 2019
A Stochastic Gradient Method with Biased Estimation for Faster Nonconvex Optimization
Jia Bi
S. Gunn
27
3
0
13 May 2019
Solving Empirical Risk Minimization in the Current Matrix Multiplication Time
Y. Lee
Zhao Song
Qiuyi Zhang
19
115
0
11 May 2019
AutoAssist: A Framework to Accelerate Training of Deep Neural Networks
Jiong Zhang
Hsiang-Fu Yu
Inderjit S. Dhillon
24
26
0
08 May 2019
Estimate Sequences for Variance-Reduced Stochastic Composite Optimization
A. Kulunchakov
Julien Mairal
16
27
0
07 May 2019
Differentiable Visual Computing
Tzu-Mao Li
21
15
0
27 Apr 2019
Some Limit Properties of Markov Chains Induced by Stochastic Recursive Algorithms
Abhishek Gupta
Hao Chen
Jianzong Pi
Gaurav Tendolkar
22
0
0
24 Apr 2019
Reducing Noise in GAN Training with Variance Reduced Extragradient
Tatjana Chavdarova
Gauthier Gidel
François Fleuret
Simon Lacoste-Julien
25
135
0
18 Apr 2019
Team QCRI-MIT at SemEval-2019 Task 4: Propaganda Analysis Meets Hyperpartisan News Detection
Abdelrhman Saleh
R. Baly
Alberto Barrón-Cedeño
Giovanni Da San Martino
Mitra Mohtarami
Preslav Nakov
James R. Glass
19
17
0
06 Apr 2019
Convergence rates for optimised adaptive importance samplers
Ömer Deniz Akyildiz
Joaquín Míguez
28
30
0
28 Mar 2019
Previous
1
2
3
4
5
6
...
9
10
11
Next