Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1309.2388
Cited By
Minimizing Finite Sums with the Stochastic Average Gradient
10 September 2013
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Minimizing Finite Sums with the Stochastic Average Gradient"
50 / 504 papers shown
Title
Computational Efficiency under Covariate Shift in Kernel Ridge Regression
Andrea Della Vecchia
Arnaud Mavakala Watusadisi
Ernesto De Vito
Lorenzo Rosasco
9
0
0
20 May 2025
A Flexible Fairness Framework with Surrogate Loss Reweighting for Addressing Sociodemographic Disparities
Wen Xu
Elham Dolatabadi
FaML
92
0
0
21 Mar 2025
FedOSAA: Improving Federated Learning with One-Step Anderson Acceleration
Xue Feng
M. Paul Laiu
Thomas Strohmer
FedML
68
0
0
14 Mar 2025
Adaptive Extrapolated Proximal Gradient Methods with Variance Reduction for Composite Nonconvex Finite-Sum Minimization
Ganzhao Yuan
43
0
0
28 Feb 2025
Effectively Leveraging Momentum Terms in Stochastic Line Search Frameworks for Fast Optimization of Finite-Sum Problems
Matteo Lapucci
Davide Pucci
ODL
32
0
0
11 Nov 2024
Analysis of ELSA COVID-19 Substudy response rate using machine learning algorithms
Marjan Qazvini
25
0
0
01 Nov 2024
Sample-Efficient Agnostic Boosting
Udaya Ghai
Karan Singh
32
0
0
31 Oct 2024
Boosting the Performance of Decentralized Federated Learning via Catalyst Acceleration
Qinglun Li
Miao Zhang
Yingqi Liu
Quanjun Yin
Li Shen
Xiaochun Cao
FedML
48
0
0
09 Oct 2024
OledFL: Unleashing the Potential of Decentralized Federated Learning via Opposite Lookahead Enhancement
Qinglun Li
Miao Zhang
Mengzhu Wang
Quanjun Yin
Li Shen
OODD
FedML
26
0
0
09 Oct 2024
FedScalar: A Communication efficient Federated Learning
M. Rostami
S. S. Kia
FedML
25
1
0
03 Oct 2024
On the SAGA algorithm with decreasing step
Luis Fredes
Bernard Bercu
Eméric Gbaguidi
34
1
0
02 Oct 2024
Convergence Conditions for Stochastic Line Search Based Optimization of Over-parametrized Models
Matteo Lapucci
Davide Pucci
37
1
0
06 Aug 2024
Sequential Gaussian Variational Inference for Nonlinear State Estimation applied to Robotic Applications
Min-Won Seo
Solmaz S. Kia
51
0
0
07 Jul 2024
CUPID: Improving Battle Fairness and Position Satisfaction in Online MOBA Games with a Re-matchmaking System
Ge Fan
Chaoyun Zhang
Kai Wang
Yingjie Li
Junyang Chen
Zenglin Xu
38
1
0
28 Jun 2024
Stochastic Optimisation Framework using the Core Imaging Library and Synergistic Image Reconstruction Framework for PET Reconstruction
E. Papoutsellis
Casper O. da Costa-Luis
D. Deidda
C. Delplancke
Margaret Duff
...
Ž. Kereta
E. Ovtchinnikov
Edoardo Pasca
Georg Schramm
Kris Thielemans
29
0
0
21 Jun 2024
Dual-Delayed Asynchronous SGD for Arbitrarily Heterogeneous Data
Xiaolu Wang
Yuchang Sun
Hoi-To Wai
Jun Zhang
49
0
0
27 May 2024
FedStale: leveraging stale client updates in federated learning
Angelo Rodio
Giovanni Neglia
FedML
48
4
0
07 May 2024
Second-order Information Promotes Mini-Batch Robustness in Variance-Reduced Gradients
Sachin Garg
A. Berahas
Michal Dereziñski
46
1
0
23 Apr 2024
Stochastic Online Optimization for Cyber-Physical and Robotic Systems
Hao Ma
Melanie Zeilinger
Michael Muehlebach
62
0
0
08 Apr 2024
Streamlining in the Riemannian Realm: Efficient Riemannian Optimization with Loopless Variance Reduction
Yury Demidovich
Grigory Malinovsky
Peter Richtárik
56
2
0
11 Mar 2024
On the Complexity of Finite-Sum Smooth Optimization under the Polyak-Łojasiewicz Condition
Yunyan Bai
Yuxing Liu
Luo Luo
26
0
0
04 Feb 2024
Incremental Quasi-Newton Methods with Faster Superlinear Convergence Rates
Zhuanghua Liu
Luo Luo
K. H. Low
27
2
0
04 Feb 2024
Continuous-time Riemannian SGD and SVRG Flows on Wasserstein Probabilistic Space
Mingyang Yi
Bohan Wang
32
0
0
24 Jan 2024
Accelerating Distributed Stochastic Optimization via Self-Repellent Random Walks
Jie Hu
Vishwaraj Doshi
Do Young Eun
55
2
0
18 Jan 2024
Stochastic optimization with arbitrary recurrent data sampling
William G. Powell
Hanbaek Lyu
42
0
0
15 Jan 2024
Online estimation of the inverse of the Hessian for stochastic optimization with application to universal stochastic Newton algorithms
Antoine Godichon-Baggioni
Wei Lu
Bruno Portier
44
1
0
15 Jan 2024
Improving the Privacy and Practicality of Objective Perturbation for Differentially Private Linear Learners
Rachel Redberg
Antti Koskela
Yu-Xiang Wang
75
5
0
31 Dec 2023
A Coefficient Makes SVRG Effective
Yida Yin
Zhiqiu Xu
Zhiyuan Li
Trevor Darrell
Zhuang Liu
44
1
0
09 Nov 2023
Computing Approximate
ℓ
p
\ell_p
ℓ
p
Sensitivities
Swati Padmanabhan
David P. Woodruff
Qiuyi Zhang
58
0
0
07 Nov 2023
Signal Processing Meets SGD: From Momentum to Filter
Zhipeng Yao
Guisong Chang
Jiaqi Zhang
Qi Zhang
Dazhou Li
Yu Zhang
ODL
41
0
0
06 Nov 2023
A Variational Perspective on High-Resolution ODEs
Hoomaan Maskan
K. C. Zygalakis
A. Yurtsever
37
3
0
03 Nov 2023
Variance-Reduced Stochastic Optimization for Efficient Inference of Hidden Markov Models
E. Sidrow
Nancy Heckman
Alexandre Bouchard-Coté
S. Fortune
A. Trites
M. Auger-Méthé
18
1
0
06 Oct 2023
Variance Reduced Halpern Iteration for Finite-Sum Monotone Inclusions
Xu Cai
Ahmet Alacaoglu
Jelena Diakonikolas
49
7
0
04 Oct 2023
On the Parallel Complexity of Multilevel Monte Carlo in Stochastic Gradient Descent
Kei Ishikawa
BDL
63
0
0
03 Oct 2023
Linear Speedup of Incremental Aggregated Gradient Methods on Streaming Data
Xiaolu Wang
Cheng Jin
Hoi-To Wai
Yuantao Gu
22
4
0
10 Sep 2023
Variance reduction techniques for stochastic proximal point algorithms
Cheik Traoré
Vassilis Apidopoulos
Saverio Salzo
S. Villa
36
5
0
18 Aug 2023
Adaptive SGD with Polyak stepsize and Line-search: Robust Convergence and Variance Reduction
Xiao-Yan Jiang
Sebastian U. Stich
33
18
0
11 Aug 2023
Faster Stochastic Algorithms for Minimax Optimization under Polyak--Łojasiewicz Conditions
Le‐Yu Chen
Boyuan Yao
Luo Luo
27
15
0
29 Jul 2023
Linear Convergence of Black-Box Variational Inference: Should We Stick the Landing?
Kyurae Kim
Yian Ma
Jacob R. Gardner
34
5
0
27 Jul 2023
A hybrid machine learning framework for clad characteristics prediction in metal additive manufacturing
S. Tayebati
K. Cho
AI4CE
28
3
0
04 Jul 2023
Efficient preconditioned stochastic gradient descent for estimation in latent variable models
C. Baey
Maud Delattre
E. Kuhn
Jean-Benoist Léger
Sarah Lemler
23
4
0
22 Jun 2023
Sharpened Lazy Incremental Quasi-Newton Method
Aakash Lahoti
Spandan Senapati
K. Rajawat
Alec Koppel
32
2
0
26 May 2023
SignSVRG: fixing SignSGD via variance reduction
Evgenii Chzhen
S. Schechtman
30
2
0
22 May 2023
Online Learning Under A Separable Stochastic Approximation Framework
Min Gan
Xiang-Xiang Su
Guang-yong Chen
Jing Chen
28
0
0
12 May 2023
Sarah Frank-Wolfe: Methods for Constrained Optimization with Best Rates and Practical Features
Aleksandr Beznosikov
David Dobre
Gauthier Gidel
30
5
0
23 Apr 2023
Accelerated Doubly Stochastic Gradient Algorithm for Large-scale Empirical Risk Minimization
Zebang Shen
Hui Qian
Tongzhou Mu
Chao Zhang
ODL
14
0
0
23 Apr 2023
Debiasing Conditional Stochastic Optimization
Lie He
S. Kasiviswanathan
CML
BDL
52
4
0
20 Apr 2023
Infeasible Deterministic, Stochastic, and Variance-Reduction Algorithms for Optimization under Orthogonality Constraints
Pierre Ablin
Simon Vary
Bin Gao
P.-A. Absil
57
8
0
29 Mar 2023
Unified analysis of SGD-type methods
Eduard A. Gorbunov
30
2
0
29 Mar 2023
Accelerated Cyclic Coordinate Dual Averaging with Extrapolation for Composite Convex Optimization
Cheuk Yin Lin
Chaobing Song
Jelena Diakonikolas
27
5
0
28 Mar 2023
1
2
3
4
...
9
10
11
Next