Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1401.2753
Cited By
v1
v2 (latest)
Stochastic Optimization with Importance Sampling
13 January 2014
P. Zhao
Tong Zhang
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Stochastic Optimization with Importance Sampling"
50 / 183 papers shown
Title
A Coreset Selection of Coreset Selection Literature: Introduction and Recent Advances
Brian B. Moser
Arundhati S. Shanbhag
Stanislav Frolov
Federico Raue
Joachim Folz
Andreas Dengel
252
0
0
23 May 2025
A Two-Stage Data Selection Framework for Data-Efficient Model Training on Edge Devices
Chen Gong
Rui Xing
Zhenzhe Zheng
Fan Wu
61
0
0
22 May 2025
From Automation to Autonomy in Smart Manufacturing: A Bayesian Optimization Framework for Modeling Multi-Objective Experimentation and Sequential Decision Making
Avijit Saha Asru
H. Khosravi
I. Imtiaz Ahmed
Abdullahil Azeem
436
0
0
05 Apr 2025
Randomized Pairwise Learning with Adaptive Sampling: A PAC-Bayes Analysis
Sijia Zhou
Yunwen Lei
Ata Kabán
146
0
0
03 Apr 2025
Rainfall regression from C-band Synthetic Aperture Radar using Multi-Task Generative Adversarial Networks
A. Colin
R. Husson
55
0
0
05 Nov 2024
Delta: A Cloud-assisted Data Enrichment Framework for On-Device Continual Learning
Chen Gong
Zhenzhe Zheng
Fan Wu
Xiaofeng Jia
Guihai Chen
LMTD
FedML
80
3
0
24 Oct 2024
FLOPS: Forward Learning with OPtimal Sampling
Tao Ren
Zishi Zhang
Jinyang Jiang
Guanghao Li
Zeliang Zhang
Mingqian Feng
Yijie Peng
146
1
0
08 Oct 2024
Accelerated Markov Chain Monte Carlo Using Adaptive Weighting Scheme
Y Samuel Wang
Wenyu Chen
Shimin Shan
83
0
0
23 Aug 2024
The Entrapment Problem in Random Walk Decentralized Learning
Zonghong Liu
S. E. Rouayheb
Matthew Dwyer
51
1
0
30 Jul 2024
Multiple Importance Sampling for Stochastic Gradient Estimation
Corentin Salaün
Xingchang Huang
Iliyan Georgiev
Niloy J. Mitra
Gurprit Singh
93
1
0
22 Jul 2024
Outlier-weighed Layerwise Sampling for LLM Fine-tuning
Pengxiang Li
L. Yin
Xiaowei Gao
Shiwei Liu
59
10
0
28 May 2024
A Unified Theory of Stochastic Proximal Point Methods without Smoothness
Peter Richtárik
Abdurakhmon Sadiev
Yury Demidovich
85
4
0
24 May 2024
Adaptive Heterogeneous Client Sampling for Federated Learning over Wireless Networks
Bing Luo
Wenli Xiao
Shiqiang Wang
Jianwei Huang
Leandros Tassiulas
FedML
85
7
0
22 Apr 2024
Unsupervised Federated Optimization at the Edge: D2D-Enabled Learning without Labels
Satyavrat Wagle
Seyyedali Hosseinalipour
Naji Khosravan
Christopher G. Brinton
FedML
62
2
0
15 Apr 2024
Learning to Rebalance Multi-Modal Optimization by Adaptively Masking Subnetworks
Yang Yang
Hongpeng Pan
Qingjun Jiang
Yi Tian Xu
Jinghui Tang
59
6
0
12 Apr 2024
LISA: Layerwise Importance Sampling for Memory-Efficient Large Language Model Fine-Tuning
Boyao Wang
Xiang Liu
Shizhe Diao
Renjie Pi
Jipeng Zhang
Chi Han
Tong Zhang
106
55
0
26 Mar 2024
Understanding the Training Speedup from Sampling with Approximate Losses
Rudrajit Das
Xi Chen
Bertram Ieong
Parikshit Bansal
Sujay Sanghavi
51
2
0
10 Feb 2024
Frugal Actor-Critic: Sample Efficient Off-Policy Deep Reinforcement Learning Using Unique Experiences
Nikhil Kumar Singh
Indranil Saha
OffRL
35
0
0
05 Feb 2024
Adaptive Sampling for Deep Learning via Efficient Nonparametric Proxies
Shabnam Daghaghi
Benjamin Coleman
Benito Geordie
Anshumali Shrivastava
38
0
0
22 Nov 2023
Adaptive Training Distributions with Scalable Online Bilevel Optimization
David Grangier
Pierre Ablin
Awni Y. Hannun
91
10
0
20 Nov 2023
Computing Approximate
ℓ
p
\ell_p
ℓ
p
Sensitivities
Swati Padmanabhan
David P. Woodruff
Qiuyi Zhang
82
0
0
07 Nov 2023
Efficient Active Learning Halfspaces with Tsybakov Noise: A Non-convex Optimization Approach
Yinan Li
Chicheng Zhang
48
1
0
23 Oct 2023
KAKURENBO: Adaptively Hiding Samples in Deep Neural Network Training
Truong Thao Nguyen
Balazs Gerofi
Edgar Josafat Martinez-Noriega
Franccois Trahay
Mohamed Wahib
56
1
0
16 Oct 2023
Enhanced Federated Optimization: Adaptive Unbiased Sampling with Reduced Variance
Dun Zeng
Zenglin Xu
Yu Pan
Xu Luo
Qifan Wang
Xiaoying Tang
FedML
72
1
0
04 Oct 2023
Combating Data Imbalances in Federated Semi-supervised Learning with Dual Regulators
Sikai Bai
Shuaicheng Li
Weiming Zhuang
Jie Zhang
Song Guo
Kunlin Yang
Jun Hou
Shuai Zhang
Junyu Gao
Shuai Yi
FedML
54
6
0
11 Jul 2023
AdaSelection: Accelerating Deep Learning Training through Data Subsampling
Minghe Zhang
Chaosheng Dong
Jinmiao Fu
Tianchen Zhou
Jia Liang
...
Bo Liu
Michinari Momma
Bryan Wang
Yan Gao
Yi Sun
79
3
0
19 Jun 2023
Importance Sparsification for Sinkhorn Algorithm
Mengyun Li
Jun Yu
Tao Li
Cheng Meng
OT
122
8
0
11 Jun 2023
Importance Sampling for Stochastic Gradient Descent in Deep Neural Networks
Thibault Lahire
31
2
0
29 Mar 2023
PA&DA: Jointly Sampling PAth and DAta for Consistent NAS
Shunong Lu
Yu Hu
Longxing Yang
Zihao Sun
Jilin Mei
Jianchao Tan
Chengru Song
47
9
0
28 Feb 2023
Client Selection for Federated Bayesian Learning
Jiarong Yang
Yuan Liu
Rahif Kassab
FedML
66
12
0
11 Dec 2022
Client Selection in Federated Learning: Principles, Challenges, and Opportunities
Lei Fu
Huan Zhang
Ge Gao
Mi Zhang
Xin Liu
FedML
86
143
0
03 Nov 2022
Preferential Subsampling for Stochastic Gradient Langevin Dynamics
Srshti Putcha
Christopher Nemeth
Paul Fearnhead
50
0
0
28 Oct 2022
DPIS: An Enhanced Mechanism for Differentially Private SGD with Importance Sampling
Jianxin Wei
Ergute Bao
X. Xiao
Yifan Yang
90
21
0
18 Oct 2022
Learning to Learn and Sample BRDFs
Chen Liu
Michael Fischer
Tobias Ritschel
AI4CE
108
14
0
07 Oct 2022
Adaptively Weighted Data Augmentation Consistency Regularization for Robust Optimization under Concept Shift
Yijun Dong
Yuege Xie
Rachel A. Ward
OOD
76
1
0
04 Oct 2022
Amortized Variational Inference: A Systematic Review
Ankush Ganguly
Sanjana Jain
Ukrit Watchareeruetai
82
17
0
22 Sep 2022
To Store or Not? Online Data Selection for Federated Learning with Limited Storage
Chen Gong
Zhenzhe Zheng
Yunfeng Shao
Bingshuai Li
Fan Wu
Guihai Chen
108
19
0
01 Sep 2022
Information FOMO: The unhealthy fear of missing out on information. A method for removing misleading data for healthier models
Ethan Pickering
T. Sapsis
68
6
0
27 Aug 2022
Adaptive Learning Rates for Faster Stochastic Gradient Methods
Samuel Horváth
Konstantin Mishchenko
Peter Richtárik
ODL
56
9
0
10 Aug 2022
Fast Heterogeneous Federated Learning with Hybrid Client Selection
Guangyuan Shen
D. Gao
Duanxiao Song
Libin Yang
Xukai Zhou
Shirui Pan
W. Lou
Fang Zhou
FedML
121
13
0
10 Aug 2022
Adaptive Sketches for Robust Regression with Importance Sampling
S. Mahabadi
David P. Woodruff
Samson Zhou
48
4
0
16 Jul 2022
Pareto Invariant Risk Minimization: Towards Mitigating the Optimization Dilemma in Out-of-Distribution Generalization
Yongqiang Chen
Kaiwen Zhou
Yatao Bian
Binghui Xie
Bing Wu
...
Kaili Ma
Han Yang
P. Zhao
Bo Han
James Cheng
OOD
OODD
82
36
0
15 Jun 2022
Rate-Distortion Theoretic Bounds on Generalization Error for Distributed Learning
Romain Chor
Abdellatif Zaidi
Milad Sefidgaran
FedML
83
15
0
06 Jun 2022
DELTA: Diverse Client Sampling for Fasting Federated Learning
Lung-Chuang Wang
Yongxin Guo
Tao R. Lin
Xiaoying Tang
FedML
115
26
0
27 May 2022
The Effect of Task Ordering in Continual Learning
Samuel J. Bell
Neil D. Lawrence
CLL
87
17
0
26 May 2022
Transformer with Memory Replay
R. Liu
Barzan Mozafari
OffRL
102
4
0
19 May 2022
Federated Learning Under Intermittent Client Availability and Time-Varying Communication Constraints
Mónica Ribero
H. Vikalo
G. Veciana
FedML
76
46
0
13 May 2022
ISTRBoost: Importance Sampling Transfer Regression using Boosting
Shrey Gupta
Jianzhao Bi
Yang Liu
Avani Wildani
41
0
0
26 Apr 2022
Active Exploration for Neural Global Illumination of Variable Scenes
Stavros Diolatzis
Julien Philip
G. Drettakis
3DV
BDL
48
23
0
15 Mar 2022
Tricks and Plugins to GBM on Images and Sequences
Biyi Fang
J. Utke
Diego Klabjan
127
0
0
01 Mar 2022
1
2
3
4
Next