Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1401.2753
Cited By
v1
v2 (latest)
Stochastic Optimization with Importance Sampling
13 January 2014
P. Zhao
Tong Zhang
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Stochastic Optimization with Importance Sampling"
50 / 183 papers shown
Title
Carpe Diem, Seize the Samples Uncertain "At the Moment" for Adaptive Batch Selection
Hwanjun Song
Minseok Kim
Sundong Kim
Jae-Gil Lee
58
16
0
19 Nov 2019
Lsh-sampling Breaks the Computation Chicken-and-egg Loop in Adaptive Stochastic Gradient Estimation
Beidi Chen
Yingchen Xu
Anshumali Shrivastava
67
16
0
30 Oct 2019
Minimal Variance Sampling in Stochastic Gradient Boosting
Bulat Ibragimov
Gleb Gusev
74
25
0
29 Oct 2019
The Practicality of Stochastic Optimization in Imaging Inverse Problems
Junqi Tang
K. Egiazarian
Mohammad Golbabaee
Mike Davies
70
32
0
22 Oct 2019
Active Learning with Importance Sampling
Muni Sreenivas Pydi
Vishnu Suresh Lokhande
19
1
0
10 Oct 2019
Straggler-Agnostic and Communication-Efficient Distributed Primal-Dual Algorithm for High-Dimensional Data Mining
Zhouyuan Huo
Heng-Chiao Huang
FedML
47
5
0
09 Oct 2019
Stochastic Optimization for Non-convex Inf-Projection Problems
Yan Yan
Yi Tian Xu
Lijun Zhang
Xiaoyu Wang
Tianbao Yang
16
3
0
26 Aug 2019
Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk Minimization
Kenji Kawaguchi
Haihao Lu
ODL
100
64
0
09 Jul 2019
A Hybrid Stochastic Optimization Framework for Stochastic Composite Nonconvex Optimization
Quoc Tran-Dinh
Nhan H. Pham
T. Dzung
Lam M. Nguyen
80
51
0
08 Jul 2019
Submodular Batch Selection for Training Deep Neural Networks
K. J. Joseph
R. VamshiTeja
Krishnakant Singh
V. Balasubramanian
72
23
0
20 Jun 2019
ADASS: Adaptive Sample Selection for Training Acceleration
Shen-Yi Zhao
Hao Gao
Wu-Jun Li
50
0
0
11 Jun 2019
Stochastic Gradients for Large-Scale Tensor Decomposition
T. Kolda
David Hong
74
56
0
04 Jun 2019
One Method to Rule Them All: Variance Reduction for Data, Parameters and Many New Methods
Filip Hanzely
Peter Richtárik
90
27
0
27 May 2019
A Unified Theory of SGD: Variance Reduction, Sampling, Quantization and Coordinate Descent
Eduard A. Gorbunov
Filip Hanzely
Peter Richtárik
111
147
0
27 May 2019
AutoAssist: A Framework to Accelerate Training of Deep Neural Networks
Jiong Zhang
Hsiang-Fu Yu
Inderjit S. Dhillon
58
27
0
08 May 2019
On Linear Learning with Manycore Processors
Eliza Wszola
Celestine Mendler-Dünner
Martin Jaggi
Markus Püschel
63
1
0
02 May 2019
Communication trade-offs for synchronized distributed SGD with large step size
Kumar Kshitij Patel
Aymeric Dieuleveut
FedML
66
27
0
25 Apr 2019
Online Variance Reduction with Mixtures
Zalan Borsos
Sebastian Curi
Kfir Y. Levy
Andreas Krause
43
14
0
29 Mar 2019
F10-SGD: Fast Training of Elastic-net Linear Models for Text Classification and Named-entity Recognition
Stanislav Peshterliev
Alexander Hsieh
I. Kiss
20
2
0
27 Feb 2019
Real-time Prediction of Automotive Collision Risk from Monocular Video
Derek J. Phillips
J. C. Aragon
Anjali Roychowdhury
Regina Madigan
Sunil Chintakindi
Mykel J. Kochenderfer
21
15
0
04 Feb 2019
Stochastic Doubly Robust Gradient
Kanghoon Lee
Jihye Choi
Moonsu Cha
Jung Kwon Lee
Tae-Yoon Kim
25
0
0
21 Dec 2018
An Empirical Study of Example Forgetting during Deep Neural Network Learning
Mariya Toneva
Alessandro Sordoni
Rémi Tachet des Combes
Adam Trischler
Yoshua Bengio
Geoffrey J. Gordon
222
744
0
12 Dec 2018
Stagewise Training Accelerates Convergence of Testing Error Over SGD
Zhuoning Yuan
Yan Yan
Rong Jin
Tianbao Yang
107
11
0
10 Dec 2018
Stochastic Optimization for DC Functions and Non-smooth Non-convex Regularizers with Non-asymptotic Convergence
Yi Tian Xu
Qi Qi
Qihang Lin
Rong Jin
Tianbao Yang
87
42
0
28 Nov 2018
Accelerating Stochastic Gradient Descent Using Antithetic Sampling
Jingchang Liu
Linli Xu
49
2
0
07 Oct 2018
ASVRG: Accelerated Proximal SVRG
Fanhua Shang
L. Jiao
Kaiwen Zhou
James Cheng
Yan Ren
Yufei Jin
ODL
96
31
0
07 Oct 2018
Sparsified SGD with Memory
Sebastian U. Stich
Jean-Baptiste Cordonnier
Martin Jaggi
106
753
0
20 Sep 2018
Label and Sample: Efficient Training of Vehicle Object Detector from Sparsely Labeled Data
Xinlei Pan
Sung-Li Chiang
John F. Canny
13
1
0
26 Aug 2018
A Fast, Principled Working Set Algorithm for Exploiting Piecewise Linear Structure in Convex Problems
Tyler B. Johnson
Carlos Guestrin
51
5
0
20 Jul 2018
Dual optimization for convex constrained objectives without the gradient-Lipschitz assumption
Martin Bompaire
Emmanuel Bacry
Stéphane Gaïffas
83
6
0
10 Jul 2018
Asymptotic optimality of adaptive importance sampling
B. Delyon
François Portier
43
29
0
04 Jun 2018
Local SGD Converges Fast and Communicates Little
Sebastian U. Stich
FedML
211
1,072
0
24 May 2018
WNGrad: Learn the Learning Rate in Gradient Descent
Xiaoxia Wu
Rachel A. Ward
Léon Bottou
70
87
0
07 Mar 2018
Not All Samples Are Created Equal: Deep Learning with Importance Sampling
Angelos Katharopoulos
François Fleuret
120
525
0
02 Mar 2018
VR-SGD: A Simple Stochastic Variance Reduction Method for Machine Learning
Fanhua Shang
Kaiwen Zhou
Hongying Liu
James Cheng
Ivor W. Tsang
Lijun Zhang
Dacheng Tao
L. Jiao
98
67
0
26 Feb 2018
Guaranteed Sufficient Decrease for Stochastic Variance Reduced Gradient Optimization
Fanhua Shang
Yuanyuan Liu
Kaiwen Zhou
James Cheng
K. K. Ng
Yuichi Yoshida
94
9
0
26 Feb 2018
Online Variance Reduction for Stochastic Optimization
Zalan Borsos
Andreas Krause
Kfir Y. Levy
50
25
0
13 Feb 2018
Faster Learning by Reduction of Data Access Time
Vinod Kumar Chauhan
A. Sharma
Kalpana Dahiya
29
5
0
18 Jan 2018
Generalization Error Bounds for Noisy, Iterative Algorithms
Ankit Pensia
Varun Jog
Po-Ling Loh
96
113
0
12 Jan 2018
Adaptive Stochastic Dual Coordinate Ascent for Conditional Random Fields
Rémi Le Priol
Alexandre Piché
Simon Lacoste-Julien
73
5
0
22 Dec 2017
Coordinate Descent with Bandit Sampling
Farnood Salehi
Patrick Thiran
L. E. Celis
78
17
0
08 Dec 2017
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
233
698
0
15 Nov 2017
Safe Adaptive Importance Sampling
Sebastian U. Stich
Anant Raj
Martin Jaggi
99
55
0
07 Nov 2017
Accelerate RNN-based Training with Importance Sampling
Fei Wang
Xiaofeng Gao
Guihai Chen
Jun Ye
12
0
0
31 Oct 2017
A PAC-Bayesian Analysis of Randomized Learning with Application to Stochastic Gradient Descent
Ben London
81
79
0
19 Sep 2017
Efficient Use of Limited-Memory Accelerators for Linear Learning on Heterogeneous Systems
Celestine Mendler-Dünner
Thomas Parnell
Martin Jaggi
FedML
60
0
0
17 Aug 2017
Stochastic Optimization with Bandit Sampling
Farnood Salehi
L. E. Celis
Patrick Thiran
42
25
0
08 Aug 2017
Stochastic, Distributed and Federated Optimization for Machine Learning
Jakub Konecný
FedML
80
38
0
04 Jul 2017
Approximate Steepest Coordinate Descent
Sebastian U. Stich
Anant Raj
Martin Jaggi
63
16
0
26 Jun 2017
IS-ASGD: Accelerating Asynchronous SGD using Importance Sampling
Fei Wang
Jun Ye
Weichen Li
Guihai Chen
78
1
0
26 Jun 2017
Previous
1
2
3
4
Next