Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1404.4805
Cited By
iPiano: Inertial Proximal Algorithm for Non-Convex Optimization
18 April 2014
Peter Ochs
Yunjin Chen
Thomas Brox
Thomas Pock
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"iPiano: Inertial Proximal Algorithm for Non-Convex Optimization"
50 / 72 papers shown
Title
A Generalization Result for Convergence in Learning-to-Optimize
Michael Sucker
Peter Ochs
89
0
0
10 Oct 2024
Deep Inertia
L
p
L_p
L
p
Half-Quadratic Splitting Unrolling Network for Sparse View CT Reconstruction
Yu Guo
Caiying Wu
Yaxin Li
Qiyu Jin
Tieyong Zeng
47
0
0
13 Aug 2024
Block Majorization Minimization with Extrapolation and Application to
β
β
β
-NMF
L. Hien
Valentin Leplat
Nicolas Gillis
80
3
0
12 Jan 2024
A New Random Reshuffling Method for Nonsmooth Nonconvex Finite-sum Optimization
Junwen Qiu
Xiao Li
Andre Milzarek
104
3
0
02 Dec 2023
Convergent plug-and-play with proximal denoiser and unconstrained regularization parameter
Samuel Hurault
A. Chambolle
Arthur Leclaire
Nicolas Papadakis
51
6
0
02 Nov 2023
Learning Weakly Convex Regularizers for Convergent Image-Reconstruction Algorithms
Alexis Goujon
Sebastian Neumayer
M. Unser
94
24
0
21 Aug 2023
Convergent Bregman Plug-and-Play Image Restoration for Poisson Inverse Problems
Samuel Hurault
Ulugbek Kamilov
Arthur Leclaire
Nicolas Papadakis
75
11
0
06 Jun 2023
Optimization-Inspired Cross-Attention Transformer for Compressive Sensing
Jie Song
Chong Mou
Shiqi Wang
Siwei Ma
Jian Zhang
93
38
0
27 Apr 2023
Efficient Neural Generation of 4K Masks for Homogeneous Diffusion Inpainting
Karl Schrader
Pascal Peter
Niklas Kämper
Joachim Weickert
45
3
0
17 Mar 2023
A relaxed proximal gradient descent algorithm for convergent plug-and-play with proximal denoiser
Samuel Hurault
A. Chambolle
Arthur Leclaire
Nicolas Papadakis
59
12
0
31 Jan 2023
DRSOM: A Dimension Reduced Second-Order Method
Chuwen Zhang
Dongdong Ge
Chang He
Bo Jiang
Yuntian Jiang
Yi-Li Ye
55
5
0
30 Jul 2022
Proximal Denoiser for Convergent Plug-and-Play Optimization with Nonconvex Regularization
Samuel Hurault
Arthur Leclaire
Nicolas Papadakis
140
77
0
31 Jan 2022
Restarted Nonconvex Accelerated Gradient Descent: No More Polylogarithmic Factor in the
O
(
ε
−
7
/
4
)
O(ε^{-7/4})
O
(
ε
−
7/4
)
Complexity
Huan Li
Zhouchen Lin
112
24
0
27 Jan 2022
Accelerated Gradient Flow: Risk, Stability, and Implicit Regularization
Yue Sheng
Alnur Ali
108
2
0
20 Jan 2022
Accelerated Proximal Alternating Gradient-Descent-Ascent for Nonconvex Minimax Machine Learning
Ziyi Chen
Shaocong Ma
Yi Zhou
58
8
0
22 Dec 2021
Training Deep Neural Networks with Adaptive Momentum Inspired by the Quadratic Optimization
Tao Sun
Huaming Ling
Zuoqiang Shi
Dongsheng Li
Bao Wang
ODL
65
13
0
18 Oct 2021
A theoretical and empirical study of new adaptive algorithms with additional momentum steps and shifted updates for stochastic non-convex optimization
C. Alecsa
55
0
0
16 Oct 2021
Convergence of Random Reshuffling Under The Kurdyka-Łojasiewicz Inequality
Xiao Li
Andre Milzarek
Junwen Qiu
95
20
0
10 Oct 2021
Gradient Step Denoiser for convergent Plug-and-Play
Samuel Hurault
Arthur Leclaire
Nicolas Papadakis
70
97
0
07 Oct 2021
Learning Sparse Masks for Diffusion-based Image Inpainting
Tobias Alt
Pascal Peter
Joachim Weickert
DiffM
60
13
0
06 Oct 2021
Distributed stochastic inertial-accelerated methods with delayed derivatives for nonconvex problems
Yangyang Xu
Yibo Xu
Yonggui Yan
Jiewei Chen
66
4
0
24 Jul 2021
Escaping Saddle Points Faster with Stochastic Momentum
Jun-Kun Wang
Chi-Heng Lin
Jacob D. Abernethy
ODL
77
22
0
05 Jun 2021
A Refined Inertial DC Algorithm for DC Programming
Yu You
Yi-Shuai Niu
26
7
0
30 Apr 2021
The Role of Momentum Parameters in the Optimal Convergence of Adaptive Polyak's Heavy-ball Methods
Wei Tao
Sheng Long
Gao-wei Wu
Qing Tao
38
14
0
15 Feb 2021
Inertial Proximal Deep Learning Alternating Minimization for Efficient Neutral Network Training
Linbo Qiao
Tao Sun
H. Pan
Dongsheng Li
51
3
0
30 Jan 2021
Mixed-type multivariate response regression with covariance estimation
Karl Oskar Ekvall
Aaron J. Molstad
13
6
0
21 Jan 2021
Global Convergence of Model Function Based Bregman Proximal Minimization Algorithms
Mahesh Chandra Mukkamala
M. Fadili
Peter Ochs
71
8
0
24 Dec 2020
AEGD: Adaptive Gradient Descent with Energy
Hailiang Liu
Xuping Tian
ODL
55
11
0
10 Oct 2020
Learnable Descent Algorithm for Nonsmooth Nonconvex Image Reconstruction
Yunmei Chen
Hongcheng Liu
X. Ye
Qingchao Zhang
161
23
0
22 Jul 2020
Optimization of Graph Total Variation via Active-Set-based Combinatorial Reconditioning
Zhenzhang Ye
Thomas Möllenhoff
Tao Wu
Daniel Cremers
18
3
0
27 Feb 2020
Proximal Gradient Algorithm with Momentum and Flexible Parameter Restart for Nonconvex Optimization
Yi Zhou
Zhe Wang
Kaiyi Ji
Yingbin Liang
Vahid Tarokh
47
8
0
26 Feb 2020
Convergence of a Stochastic Gradient Method with Momentum for Non-Smooth Non-Convex Optimization
Vien V. Mai
M. Johansson
89
56
0
13 Feb 2020
Convergence Analysis of a Momentum Algorithm with Adaptive Step Size for Non Convex Optimization
Anas Barakat
Pascal Bianchi
77
12
0
18 Nov 2019
Bregman Proximal Framework for Deep Linear Neural Networks
Mahesh Chandra Mukkamala
Felix Westerkamp
Emanuel Laude
Daniel Cremers
Peter Ochs
77
7
0
08 Oct 2019
Variational Osmosis for Non-linear Image Fusion
S. Parisotto
L. Calatroni
Aurélie Bugeau
Nicolas Papadakis
Carola-Bibiane Schönlieb
16
24
0
04 Oct 2019
Randomized Iterative Methods for Linear Systems: Momentum, Inexactness and Gossip
Nicolas Loizou
65
5
0
26 Sep 2019
Inertial nonconvex alternating minimizations for the image deblurring
Tao Sun
R. Barrio
Marcos Rodríguez
Hao Jiang
47
12
0
27 Jul 2019
Heavy-ball Algorithms Always Escape Saddle Points
Tao Sun
Dongsheng Li
Zhe Quan
Hao Jiang
Shengguo Li
Y. Dou
ODL
56
21
0
23 Jul 2019
Beyond Alternating Updates for Matrix Factorization with Inertial Bregman Proximal Gradient Algorithms
Mahesh Chandra Mukkamala
Peter Ochs
78
23
0
22 May 2019
Convex-Concave Backtracking for Inertial Bregman Proximal Gradient Algorithms in Non-Convex Optimization
Mahesh Chandra Mukkamala
Peter Ochs
Thomas Pock
Shoham Sabach
55
52
0
06 Apr 2019
Inertial Block Proximal Methods for Non-Convex Non-Smooth Optimization
L. Hien
Nicolas Gillis
Panagiotis Patrinos
34
11
0
05 Mar 2019
Time-Delay Momentum: A Regularization Perspective on the Convergence and Generalization of Stochastic Momentum for Deep Learning
Ziming Zhang
Wenju Xu
Alan Sullivan
99
1
0
02 Mar 2019
Non-ergodic Convergence Analysis of Heavy-Ball Algorithms
Tao Sun
Penghang Yin
Dongsheng Li
Chun Huang
Lei Guan
Hao Jiang
58
46
0
05 Nov 2018
On the Generalization of Stochastic Gradient Descent with Momentum
Ali Ramezani-Kebrya
Kimon Antonakopoulos
Volkan Cevher
Ashish Khisti
Ben Liang
MLT
73
26
0
12 Sep 2018
A Unified Analysis of Stochastic Momentum Methods for Deep Learning
Yan Yan
Tianbao Yang
Zhe Li
Qihang Lin
Yi Yang
53
120
0
30 Aug 2018
Proximal boosting: aggregating weak learners to minimize non-differentiable losses
Erwan Fouillen
C. Boyer
Maxime Sangnier
FedML
70
2
0
29 Aug 2018
Composite Optimization by Nonconvex Majorization-Minimization
Jonas Geiping
Michael Möller
49
17
0
20 Feb 2018
Non-ergodic Complexity of Convex Proximal Inertial Gradient Descents
Tao Sun
Linbo Qiao
Penghang Yin
30
0
0
23 Jan 2018
On the Proximal Gradient Algorithm with Alternated Inertia
F. Iutzeler
J. Malick
44
33
0
17 Jan 2018
Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods
Nicolas Loizou
Peter Richtárik
80
204
0
27 Dec 2017
1
2
Next