ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1404.4805
  4. Cited By
iPiano: Inertial Proximal Algorithm for Non-Convex Optimization

iPiano: Inertial Proximal Algorithm for Non-Convex Optimization

18 April 2014
Peter Ochs
Yunjin Chen
Thomas Brox
Thomas Pock
ArXiv (abs)PDFHTML

Papers citing "iPiano: Inertial Proximal Algorithm for Non-Convex Optimization"

50 / 72 papers shown
Title
A Generalization Result for Convergence in Learning-to-Optimize
A Generalization Result for Convergence in Learning-to-Optimize
Michael Sucker
Peter Ochs
89
0
0
10 Oct 2024
Deep Inertia $L_p$ Half-Quadratic Splitting Unrolling Network for Sparse
  View CT Reconstruction
Deep Inertia LpL_pLp​ Half-Quadratic Splitting Unrolling Network for Sparse View CT Reconstruction
Yu Guo
Caiying Wu
Yaxin Li
Qiyu Jin
Tieyong Zeng
47
0
0
13 Aug 2024
Block Majorization Minimization with Extrapolation and Application to $β$-NMF
Block Majorization Minimization with Extrapolation and Application to βββ-NMF
L. Hien
Valentin Leplat
Nicolas Gillis
87
3
0
12 Jan 2024
A New Random Reshuffling Method for Nonsmooth Nonconvex Finite-sum
  Optimization
A New Random Reshuffling Method for Nonsmooth Nonconvex Finite-sum Optimization
Junwen Qiu
Xiao Li
Andre Milzarek
104
3
0
02 Dec 2023
Convergent plug-and-play with proximal denoiser and unconstrained
  regularization parameter
Convergent plug-and-play with proximal denoiser and unconstrained regularization parameter
Samuel Hurault
A. Chambolle
Arthur Leclaire
Nicolas Papadakis
51
6
0
02 Nov 2023
Learning Weakly Convex Regularizers for Convergent Image-Reconstruction
  Algorithms
Learning Weakly Convex Regularizers for Convergent Image-Reconstruction Algorithms
Alexis Goujon
Sebastian Neumayer
M. Unser
94
24
0
21 Aug 2023
Convergent Bregman Plug-and-Play Image Restoration for Poisson Inverse
  Problems
Convergent Bregman Plug-and-Play Image Restoration for Poisson Inverse Problems
Samuel Hurault
Ulugbek Kamilov
Arthur Leclaire
Nicolas Papadakis
75
11
0
06 Jun 2023
Optimization-Inspired Cross-Attention Transformer for Compressive
  Sensing
Optimization-Inspired Cross-Attention Transformer for Compressive Sensing
Jie Song
Chong Mou
Shiqi Wang
Siwei Ma
Jian Zhang
93
38
0
27 Apr 2023
Efficient Neural Generation of 4K Masks for Homogeneous Diffusion
  Inpainting
Efficient Neural Generation of 4K Masks for Homogeneous Diffusion Inpainting
Karl Schrader
Pascal Peter
Niklas Kämper
Joachim Weickert
45
3
0
17 Mar 2023
A relaxed proximal gradient descent algorithm for convergent
  plug-and-play with proximal denoiser
A relaxed proximal gradient descent algorithm for convergent plug-and-play with proximal denoiser
Samuel Hurault
A. Chambolle
Arthur Leclaire
Nicolas Papadakis
59
12
0
31 Jan 2023
DRSOM: A Dimension Reduced Second-Order Method
DRSOM: A Dimension Reduced Second-Order Method
Chuwen Zhang
Dongdong Ge
Chang He
Bo Jiang
Yuntian Jiang
Yi-Li Ye
55
5
0
30 Jul 2022
Proximal Denoiser for Convergent Plug-and-Play Optimization with
  Nonconvex Regularization
Proximal Denoiser for Convergent Plug-and-Play Optimization with Nonconvex Regularization
Samuel Hurault
Arthur Leclaire
Nicolas Papadakis
140
77
0
31 Jan 2022
Restarted Nonconvex Accelerated Gradient Descent: No More
  Polylogarithmic Factor in the $O(ε^{-7/4})$ Complexity
Restarted Nonconvex Accelerated Gradient Descent: No More Polylogarithmic Factor in the O(ε−7/4)O(ε^{-7/4})O(ε−7/4) Complexity
Huan Li
Zhouchen Lin
112
24
0
27 Jan 2022
Accelerated Gradient Flow: Risk, Stability, and Implicit Regularization
Accelerated Gradient Flow: Risk, Stability, and Implicit Regularization
Yue Sheng
Alnur Ali
108
2
0
20 Jan 2022
Accelerated Proximal Alternating Gradient-Descent-Ascent for Nonconvex
  Minimax Machine Learning
Accelerated Proximal Alternating Gradient-Descent-Ascent for Nonconvex Minimax Machine Learning
Ziyi Chen
Shaocong Ma
Yi Zhou
58
8
0
22 Dec 2021
Training Deep Neural Networks with Adaptive Momentum Inspired by the
  Quadratic Optimization
Training Deep Neural Networks with Adaptive Momentum Inspired by the Quadratic Optimization
Tao Sun
Huaming Ling
Zuoqiang Shi
Dongsheng Li
Bao Wang
ODL
65
13
0
18 Oct 2021
A theoretical and empirical study of new adaptive algorithms with
  additional momentum steps and shifted updates for stochastic non-convex
  optimization
A theoretical and empirical study of new adaptive algorithms with additional momentum steps and shifted updates for stochastic non-convex optimization
C. Alecsa
55
0
0
16 Oct 2021
Convergence of Random Reshuffling Under The Kurdyka-Łojasiewicz
  Inequality
Convergence of Random Reshuffling Under The Kurdyka-Łojasiewicz Inequality
Xiao Li
Andre Milzarek
Junwen Qiu
95
20
0
10 Oct 2021
Gradient Step Denoiser for convergent Plug-and-Play
Gradient Step Denoiser for convergent Plug-and-Play
Samuel Hurault
Arthur Leclaire
Nicolas Papadakis
70
97
0
07 Oct 2021
Learning Sparse Masks for Diffusion-based Image Inpainting
Learning Sparse Masks for Diffusion-based Image Inpainting
Tobias Alt
Pascal Peter
Joachim Weickert
DiffM
60
13
0
06 Oct 2021
Distributed stochastic inertial-accelerated methods with delayed
  derivatives for nonconvex problems
Distributed stochastic inertial-accelerated methods with delayed derivatives for nonconvex problems
Yangyang Xu
Yibo Xu
Yonggui Yan
Jiewei Chen
66
4
0
24 Jul 2021
Escaping Saddle Points Faster with Stochastic Momentum
Escaping Saddle Points Faster with Stochastic Momentum
Jun-Kun Wang
Chi-Heng Lin
Jacob D. Abernethy
ODL
77
22
0
05 Jun 2021
A Refined Inertial DC Algorithm for DC Programming
A Refined Inertial DC Algorithm for DC Programming
Yu You
Yi-Shuai Niu
26
7
0
30 Apr 2021
The Role of Momentum Parameters in the Optimal Convergence of Adaptive
  Polyak's Heavy-ball Methods
The Role of Momentum Parameters in the Optimal Convergence of Adaptive Polyak's Heavy-ball Methods
Wei Tao
Sheng Long
Gao-wei Wu
Qing Tao
38
14
0
15 Feb 2021
Inertial Proximal Deep Learning Alternating Minimization for Efficient
  Neutral Network Training
Inertial Proximal Deep Learning Alternating Minimization for Efficient Neutral Network Training
Linbo Qiao
Tao Sun
H. Pan
Dongsheng Li
51
3
0
30 Jan 2021
Mixed-type multivariate response regression with covariance estimation
Mixed-type multivariate response regression with covariance estimation
Karl Oskar Ekvall
Aaron J. Molstad
13
6
0
21 Jan 2021
Global Convergence of Model Function Based Bregman Proximal Minimization
  Algorithms
Global Convergence of Model Function Based Bregman Proximal Minimization Algorithms
Mahesh Chandra Mukkamala
M. Fadili
Peter Ochs
71
8
0
24 Dec 2020
AEGD: Adaptive Gradient Descent with Energy
AEGD: Adaptive Gradient Descent with Energy
Hailiang Liu
Xuping Tian
ODL
55
11
0
10 Oct 2020
Learnable Descent Algorithm for Nonsmooth Nonconvex Image Reconstruction
Learnable Descent Algorithm for Nonsmooth Nonconvex Image Reconstruction
Yunmei Chen
Hongcheng Liu
X. Ye
Qingchao Zhang
161
23
0
22 Jul 2020
Optimization of Graph Total Variation via Active-Set-based Combinatorial
  Reconditioning
Optimization of Graph Total Variation via Active-Set-based Combinatorial Reconditioning
Zhenzhang Ye
Thomas Möllenhoff
Tao Wu
Daniel Cremers
18
3
0
27 Feb 2020
Proximal Gradient Algorithm with Momentum and Flexible Parameter Restart
  for Nonconvex Optimization
Proximal Gradient Algorithm with Momentum and Flexible Parameter Restart for Nonconvex Optimization
Yi Zhou
Zhe Wang
Kaiyi Ji
Yingbin Liang
Vahid Tarokh
47
8
0
26 Feb 2020
Convergence of a Stochastic Gradient Method with Momentum for Non-Smooth
  Non-Convex Optimization
Convergence of a Stochastic Gradient Method with Momentum for Non-Smooth Non-Convex Optimization
Vien V. Mai
M. Johansson
91
56
0
13 Feb 2020
Convergence Analysis of a Momentum Algorithm with Adaptive Step Size for
  Non Convex Optimization
Convergence Analysis of a Momentum Algorithm with Adaptive Step Size for Non Convex Optimization
Anas Barakat
Pascal Bianchi
77
12
0
18 Nov 2019
Bregman Proximal Framework for Deep Linear Neural Networks
Bregman Proximal Framework for Deep Linear Neural Networks
Mahesh Chandra Mukkamala
Felix Westerkamp
Emanuel Laude
Daniel Cremers
Peter Ochs
77
7
0
08 Oct 2019
Variational Osmosis for Non-linear Image Fusion
Variational Osmosis for Non-linear Image Fusion
S. Parisotto
L. Calatroni
Aurélie Bugeau
Nicolas Papadakis
Carola-Bibiane Schönlieb
16
24
0
04 Oct 2019
Randomized Iterative Methods for Linear Systems: Momentum, Inexactness
  and Gossip
Randomized Iterative Methods for Linear Systems: Momentum, Inexactness and Gossip
Nicolas Loizou
65
5
0
26 Sep 2019
Inertial nonconvex alternating minimizations for the image deblurring
Inertial nonconvex alternating minimizations for the image deblurring
Tao Sun
R. Barrio
Marcos Rodríguez
Hao Jiang
47
12
0
27 Jul 2019
Heavy-ball Algorithms Always Escape Saddle Points
Heavy-ball Algorithms Always Escape Saddle Points
Tao Sun
Dongsheng Li
Zhe Quan
Hao Jiang
Shengguo Li
Y. Dou
ODL
56
21
0
23 Jul 2019
Beyond Alternating Updates for Matrix Factorization with Inertial
  Bregman Proximal Gradient Algorithms
Beyond Alternating Updates for Matrix Factorization with Inertial Bregman Proximal Gradient Algorithms
Mahesh Chandra Mukkamala
Peter Ochs
78
23
0
22 May 2019
Convex-Concave Backtracking for Inertial Bregman Proximal Gradient
  Algorithms in Non-Convex Optimization
Convex-Concave Backtracking for Inertial Bregman Proximal Gradient Algorithms in Non-Convex Optimization
Mahesh Chandra Mukkamala
Peter Ochs
Thomas Pock
Shoham Sabach
55
52
0
06 Apr 2019
Inertial Block Proximal Methods for Non-Convex Non-Smooth Optimization
Inertial Block Proximal Methods for Non-Convex Non-Smooth Optimization
L. Hien
Nicolas Gillis
Panagiotis Patrinos
36
11
0
05 Mar 2019
Time-Delay Momentum: A Regularization Perspective on the Convergence and Generalization of Stochastic Momentum for Deep Learning
Ziming Zhang
Wenju Xu
Alan Sullivan
99
1
0
02 Mar 2019
Non-ergodic Convergence Analysis of Heavy-Ball Algorithms
Non-ergodic Convergence Analysis of Heavy-Ball Algorithms
Tao Sun
Penghang Yin
Dongsheng Li
Chun Huang
Lei Guan
Hao Jiang
58
46
0
05 Nov 2018
On the Generalization of Stochastic Gradient Descent with Momentum
On the Generalization of Stochastic Gradient Descent with Momentum
Ali Ramezani-Kebrya
Kimon Antonakopoulos
Volkan Cevher
Ashish Khisti
Ben Liang
MLT
73
26
0
12 Sep 2018
A Unified Analysis of Stochastic Momentum Methods for Deep Learning
A Unified Analysis of Stochastic Momentum Methods for Deep Learning
Yan Yan
Tianbao Yang
Zhe Li
Qihang Lin
Yi Yang
53
120
0
30 Aug 2018
Proximal boosting: aggregating weak learners to minimize
  non-differentiable losses
Proximal boosting: aggregating weak learners to minimize non-differentiable losses
Erwan Fouillen
C. Boyer
Maxime Sangnier
FedML
70
2
0
29 Aug 2018
Composite Optimization by Nonconvex Majorization-Minimization
Composite Optimization by Nonconvex Majorization-Minimization
Jonas Geiping
Michael Möller
49
17
0
20 Feb 2018
Non-ergodic Complexity of Convex Proximal Inertial Gradient Descents
Non-ergodic Complexity of Convex Proximal Inertial Gradient Descents
Tao Sun
Linbo Qiao
Penghang Yin
30
0
0
23 Jan 2018
On the Proximal Gradient Algorithm with Alternated Inertia
On the Proximal Gradient Algorithm with Alternated Inertia
F. Iutzeler
J. Malick
44
33
0
17 Jan 2018
Momentum and Stochastic Momentum for Stochastic Gradient, Newton,
  Proximal Point and Subspace Descent Methods
Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods
Nicolas Loizou
Peter Richtárik
80
204
0
27 Dec 2017
12
Next