ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1410.1462
  4. Cited By
Top Rank Optimization in Linear Time

Top Rank Optimization in Linear Time

6 October 2014
Nan Li
Rong Jin
Zhi Zhou
ArXiv (abs)PDFHTML

Papers citing "Top Rank Optimization in Linear Time"

29 / 29 papers shown
Title
Bipartite Ranking From Multiple Labels: On Loss Versus Label Aggregation
Bipartite Ranking From Multiple Labels: On Loss Versus Label Aggregation
Michal Lukasik
Lin Chen
Harikrishna Narasimhan
A. Menon
Wittawat Jitkrittum
Felix X. Yu
Sashank J. Reddi
Gang Fu
M. Bateni
Sanjiv Kumar
55
1
0
15 Apr 2025
On the Theories Behind Hard Negative Sampling for Recommendation
On the Theories Behind Hard Negative Sampling for Recommendation
Wentao Shi
Jiawei Chen
Fuli Feng
Jizhi Zhang
Junkang Wu
Chongming Gao
Xiangnan He
BDL
94
37
0
07 Feb 2023
Optimizing Two-way Partial AUC with an End-to-end Framework
Optimizing Two-way Partial AUC with an End-to-end Framework
Zhiyong Yang
Qianqian Xu
Shilong Bao
Yuan He
Xiaochun Cao
Qingming Huang
75
20
0
23 Jun 2022
Algorithmic Foundations of Empirical X-risk Minimization
Algorithmic Foundations of Empirical X-risk Minimization
Tianbao Yang
134
6
0
01 Jun 2022
AUC Maximization in the Era of Big Data and AI: A Survey
AUC Maximization in the Era of Big Data and AI: A Survey
Tianbao Yang
Yiming Ying
172
188
0
28 Mar 2022
Revealing Reliable Signatures by Learning Top-Rank Pairs
Revealing Reliable Signatures by Learning Top-Rank Pairs
Xiaotong Ji
Yan Zheng
D. Suehiro
Seiichi Uchida
54
1
0
17 Mar 2022
When AUC meets DRO: Optimizing Partial AUC for Deep Learning with
  Non-Convex Convergence Guarantee
When AUC meets DRO: Optimizing Partial AUC for Deep Learning with Non-Convex Convergence Guarantee
Dixian Zhu
Gang Li
Bokun Wang
Xiaodong Wu
Tianbao Yang
138
32
0
01 Mar 2022
DeepTopPush: Simple and Scalable Method for Accuracy at the Top
DeepTopPush: Simple and Scalable Method for Accuracy at the Top
V. Mácha
Lukáš Adam
Václav Smídl
53
2
0
22 Jun 2020
Nonlinear classifiers for ranking problems based on kernelized SVM
Nonlinear classifiers for ranking problems based on kernelized SVM
V. Mácha
Lukáš Adam
Václav Smídl
15
2
0
26 Feb 2020
General Framework for Binary Classification on Top Samples
General Framework for Binary Classification on Top Samples
Lukáš Adam
V. Mácha
Václav Smídl
Tomás Pevný
47
5
0
25 Feb 2020
The Limited Multi-Label Projection Layer
The Limited Multi-Label Projection Layer
Brandon Amos
V. Koltun
J. Zico Kolter
95
36
0
20 Jun 2019
Few-Shot Deep Adversarial Learning for Video-based Person
  Re-identification
Few-Shot Deep Adversarial Learning for Video-based Person Re-identification
Lin Wu
Yang Wang
Hongzhi Yin
Meng Wang
Ling Shao
85
81
0
29 Mar 2019
Radiological images and machine learning: trends, perspectives, and
  prospects
Radiological images and machine learning: trends, perspectives, and prospects
Zhenwei Zhang
E. Sejdić
LM&MAMedImAI4CE
57
167
0
27 Mar 2019
Cold-start Playlist Recommendation with Multitask Learning
Cold-start Playlist Recommendation with Multitask Learning
Dawei Chen
Cheng Soon Ong
A. Menon
33
4
0
18 Jan 2019
Drug Selection via Joint Push and Learning to Rank
Drug Selection via Joint Push and Learning to Rank
Yicheng He
Junfeng Liu
Xia Ning
35
16
0
23 Jan 2018
tau-FPL: Tolerance-Constrained Learning in Linear Time
tau-FPL: Tolerance-Constrained Learning in Linear Time
Ao Zhang
Nan Li
Jian Pu
Jun Wang
Junchi Yan
H. Zha
27
2
0
15 Jan 2018
Quality Aware Network for Set to Set Recognition
Quality Aware Network for Set to Set Recognition
Yu Liu
Junjie Yan
Wanli Ouyang
72
316
0
11 Apr 2017
Analysis and Optimization of Loss Functions for Multiclass, Top-k, and
  Multilabel Classification
Analysis and Optimization of Loss Functions for Multiclass, Top-k, and Multilabel Classification
Maksim Lapin
Matthias Hein
Bernt Schiele
87
103
0
12 Dec 2016
Learning convolutional neural network to maximize Pos@Top performance
  measure
Learning convolutional neural network to maximize Pos@Top performance measure
Yanyan Geng
Ru‐Ze Liang
Weizhi Li
Qinfeng Li
Gaoyuan Liang
Chenhao Xu
Jim Jing-Yan Wang
62
50
0
27 Sep 2016
Confidence-Weighted Bipartite Ranking
Confidence-Weighted Bipartite Ranking
Majdi Khalid
I. Ray
H. Chitsaz
47
11
0
04 Jul 2016
Top-push Video-based Person Re-identification
Top-push Video-based Person Re-identification
Jinjie You
Ancong Wu
Xiang Li
Weishi Zheng
68
258
0
29 Apr 2016
Optimizing Top Precision Performance Measure of Content-Based Image
  Retrieval by Learning Similarity Function
Optimizing Top Precision Performance Measure of Content-Based Image Retrieval by Learning Similarity Function
Ru‐Ze Liang
Lihui Shi
Haoxiang Wang
Jian Meng
Jim Jing-Yan Wang
Qingquan Sun
Yi Gu
57
92
0
22 Apr 2016
Loss Functions for Top-k Error: Analysis and Insights
Loss Functions for Top-k Error: Analysis and Insights
Maksim Lapin
Matthias Hein
Bernt Schiele
167
96
0
01 Dec 2015
Top-k Multiclass SVM
Top-k Multiclass SVM
Maksim Lapin
Matthias Hein
Bernt Schiele
VLM
68
92
0
20 Nov 2015
Semi-supervised Collaborative Ranking with Push at Top
Semi-supervised Collaborative Ranking with Push at Top
Iman Barjasteh
R. Forsati
A. Esfahanian
H. Radha
20
5
0
17 Nov 2015
Transductive Optimization of Top k Precision
Transductive Optimization of Top k Precision
Li-Ping Liu
Thomas G. Dietterich
Nan Li
Zhi Zhou
64
17
0
20 Oct 2015
Perceptron like Algorithms for Online Learning to Rank
Perceptron like Algorithms for Online Learning to Rank
Sougata Chaudhuri
Ambuj Tewari
61
2
0
04 Aug 2015
Surrogate Functions for Maximizing Precision at the Top
Surrogate Functions for Maximizing Precision at the Top
Purushottam Kar
Harikrishna Narasimhan
Prateek Jain
80
42
0
26 May 2015
Exploit Bounding Box Annotations for Multi-label Object Recognition
Exploit Bounding Box Annotations for Multi-label Object Recognition
Hao Yang
Qiufeng Wang
Yu Zhang
Bin-Bin Gao
Jianxin Wu
Jianfei Cai
105
164
0
22 Apr 2015
1