ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1410.6776
  4. Cited By
Online and Stochastic Gradient Methods for Non-decomposable Loss
  Functions

Online and Stochastic Gradient Methods for Non-decomposable Loss Functions

24 October 2014
Purushottam Kar
Harikrishna Narasimhan
Prateek Jain
ArXiv (abs)PDFHTML

Papers citing "Online and Stochastic Gradient Methods for Non-decomposable Loss Functions"

32 / 32 papers shown
Title
Stochastic Primal-Dual Double Block-Coordinate for Two-way Partial AUC Maximization
Stochastic Primal-Dual Double Block-Coordinate for Two-way Partial AUC Maximization
Linli Zhou
Bokun Wang
My T. Thai
Tianbao Yang
61
0
0
28 May 2025
A General Online Algorithm for Optimizing Complex Performance Metrics
A General Online Algorithm for Optimizing Complex Performance Metrics
Wojciech Kotłowski
Marek Wydmuch
Erik Schultheis
Rohit Babbar
Krzysztof Dembczyñski
113
1
0
20 Jun 2024
Simple Weak Coresets for Non-Decomposable Classification Measures
Simple Weak Coresets for Non-Decomposable Classification Measures
Jayesh Malaviya
Anirban Dasgupta
Rachit Chhaya
149
0
0
15 Dec 2023
Asymptotically Unbiased Instance-wise Regularized Partial AUC
  Optimization: Theory and Algorithm
Asymptotically Unbiased Instance-wise Regularized Partial AUC Optimization: Theory and Algorithm
Huiyang Shao
Qianqian Xu
Zhiyong Yang
Shilong Bao
Qingming Huang
153
5
0
08 Oct 2022
Multi-block Min-max Bilevel Optimization with Applications in Multi-task
  Deep AUC Maximization
Multi-block Min-max Bilevel Optimization with Applications in Multi-task Deep AUC Maximization
Quanqi Hu
Yongjian Zhong
Tianbao Yang
185
17
0
01 Jun 2022
Counterfactual Learning To Rank for Utility-Maximizing Query
  Autocompletion
Counterfactual Learning To Rank for Utility-Maximizing Query Autocompletion
Adam Block
Rahul Kidambi
Daniel N. Hill
Thorsten Joachims
Inderjit S. Dhillon
CML
96
8
0
22 Apr 2022
AUC Maximization in the Era of Big Data and AI: A Survey
AUC Maximization in the Era of Big Data and AI: A Survey
Tianbao Yang
Yiming Ying
269
213
0
28 Mar 2022
Large-scale Optimization of Partial AUC in a Range of False Positive
  Rates
Large-scale Optimization of Partial AUC in a Range of False Positive Rates
Yao Yao
Qihang Lin
Tianbao Yang
142
17
0
03 Mar 2022
When AUC meets DRO: Optimizing Partial AUC for Deep Learning with
  Non-Convex Convergence Guarantee
When AUC meets DRO: Optimizing Partial AUC for Deep Learning with Non-Convex Convergence Guarantee
Dixian Zhu
Gang Li
Bokun Wang
Xiaodong Wu
Tianbao Yang
275
35
0
01 Mar 2022
Deep AUC Maximization for Medical Image Classification: Challenges and
  Opportunities
Deep AUC Maximization for Medical Image Classification: Challenges and Opportunities
Tianbao Yang
136
5
0
01 Nov 2021
Implicit Rate-Constrained Optimization of Non-decomposable Objectives
Implicit Rate-Constrained Optimization of Non-decomposable Objectives
Abhishek Kumar
Harikrishna Narasimhan
Andrew Cotter
154
11
0
23 Jul 2021
A surrogate loss function for optimization of $F_β$ score in binary
  classification with imbalanced data
A surrogate loss function for optimization of FβF_βFβ​ score in binary classification with imbalanced data
Namgil Lee
Heejung Yang
Hojin Yoo
52
11
0
03 Apr 2021
Optimizing Black-box Metrics with Iterative Example Weighting
Optimizing Black-box Metrics with Iterative Example Weighting
Gaurush Hiranandani
Jatin Mathur
Harikrishna Narasimhan
M. M. Fard
Oluwasanmi Koyejo
NoLa
112
7
0
18 Feb 2021
How Good are Low-Rank Approximations in Gaussian Process Regression?
How Good are Low-Rank Approximations in Gaussian Process Regression?
C. Daskalakis
P. Dellaportas
A. Panos
117
4
0
03 Apr 2020
Optimizing Black-box Metrics with Adaptive Surrogates
Optimizing Black-box Metrics with Adaptive Surrogates
Qijia Jiang
Olaoluwa Adigun
Harikrishna Narasimhan
M. M. Fard
Maya R. Gupta
65
18
0
20 Feb 2020
AP-Perf: Incorporating Generic Performance Metrics in Differentiable
  Learning
AP-Perf: Incorporating Generic Performance Metrics in Differentiable Learning
Rizal Fathony
J. Zico Kolter
FedML
108
17
0
02 Dec 2019
Optimizing Nondecomposable Data Dependent Regularizers via Lagrangian
  Reparameterization offers Significant Performance and Efficiency Gains
Optimizing Nondecomposable Data Dependent Regularizers via Lagrangian Reparameterization offers Significant Performance and Efficiency Gains
Sathya Ravi
Abhay Venkatesh
G. Fung
Vikas Singh
80
3
0
26 Sep 2019
Optimizing Generalized Rate Metrics through Game Equilibrium
Optimizing Generalized Rate Metrics through Game Equilibrium
Harikrishna Narasimhan
Andrew Cotter
Maya R. Gupta
81
4
0
06 Sep 2019
Calibrated Surrogate Maximization of Linear-fractional Utility in Binary
  Classification
Calibrated Surrogate Maximization of Linear-fractional Utility in Binary Classification
Han Bao
Masashi Sugiyama
93
19
0
29 May 2019
Addressing the Loss-Metric Mismatch with Adaptive Loss Alignment
Addressing the Loss-Metric Mismatch with Adaptive Loss Alignment
Chen Huang
Shuangfei Zhai
Walter A. Talbott
Miguel Angel Bautista
Shi Sun
Carlos Guestrin
J. Susskind
109
78
0
15 May 2019
AdaCoSeg: Adaptive Shape Co-Segmentation with Group Consistency Loss
AdaCoSeg: Adaptive Shape Co-Segmentation with Group Consistency Loss
Chenyang Zhu
Kai Xu
S. Chaudhuri
L. Yi
Leonidas Guibas
Hao Zhang
3DPC
124
9
0
25 Mar 2019
Backdrop: Stochastic Backpropagation
Backdrop: Stochastic Backpropagation
Siavash Golkar
Kyle Cranmer
76
2
0
04 Jun 2018
Binary Classification with Karmic, Threshold-Quasi-Concave Metrics
Binary Classification with Karmic, Threshold-Quasi-Concave Metrics
Bowei Yan
Oluwasanmi Koyejo
Kai Zhong
Pradeep Ravikumar
97
32
0
02 Jun 2018
Constrained Classification and Ranking via Quantiles
Constrained Classification and Ranking via Quantiles
Alan Mackey
Xiyang Luo
Elad Eban
89
6
0
28 Feb 2018
Optimizing Non-decomposable Measures with Deep Networks
Optimizing Non-decomposable Measures with Deep Networks
Amartya Sanyal
Pawan Kumar
Purushottam Kar
Sanjay Chawla
Fabrizio Sebastiani
104
28
0
31 Jan 2018
Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition
Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition
Naoya Takeishi
Yoshinobu Kawahara
Takehisa Yairi
159
392
0
12 Oct 2017
SpectralLeader: Online Spectral Learning for Single Topic Models
SpectralLeader: Online Spectral Learning for Single Topic Models
Tong Yu
Branislav Kveton
Zheng Wen
Hung Bui
Ole J. Mengshoel
BDL
73
0
0
21 Sep 2017
Scalable Learning of Non-Decomposable Objectives
Scalable Learning of Non-Decomposable Objectives
Elad Eban
Mariano Schain
Alan Mackey
A. Gordon
R. Rifkin
G. Elidan
84
112
0
16 Aug 2016
Support Vector Algorithms for Optimizing the Partial Area Under the ROC
  Curve
Support Vector Algorithms for Optimizing the Partial Area Under the ROC Curve
Harikrishna Narasimhan
S. Agarwal
56
39
0
13 May 2016
Online Optimization Methods for the Quantification Problem
Online Optimization Methods for the Quantification Problem
Purushottam Kar
Shuai Li
Harikrishna Narasimhan
Sanjay Chawla
Fabrizio Sebastiani
93
46
0
13 May 2016
Surrogate Functions for Maximizing Precision at the Top
Surrogate Functions for Maximizing Precision at the Top
Purushottam Kar
Harikrishna Narasimhan
Prateek Jain
113
44
0
26 May 2015
Optimizing Non-decomposable Performance Measures: A Tale of Two Classes
Optimizing Non-decomposable Performance Measures: A Tale of Two Classes
Harikrishna Narasimhan
Purushottam Kar
Prateek Jain
107
48
0
26 May 2015
1