ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.8695
  4. Cited By
On Particle Methods for Parameter Estimation in State-Space Models
v1v2 (latest)

On Particle Methods for Parameter Estimation in State-Space Models

30 December 2014
N. Kantas
Arnaud Doucet
Sumeetpal S. Singh
J. Maciejowski
Nicolas Chopin
ArXiv (abs)PDFHTML

Papers citing "On Particle Methods for Parameter Estimation in State-Space Models"

50 / 118 papers shown
Title
Sequential Monte Carlo for Policy Optimization in Continuous POMDPs
Sequential Monte Carlo for Policy Optimization in Continuous POMDPs
Hany Abdulsamad
Sahel Iqbal
Simo Särkkä
65
0
0
22 May 2025
Learning to be Smooth: An End-to-End Differentiable Particle Smoother
Learning to be Smooth: An End-to-End Differentiable Particle Smoother
Ali Younis
Erik B. Sudderth
AI4TS
86
0
0
14 Feb 2025
Video Latent Flow Matching: Optimal Polynomial Projections for Video Interpolation and Extrapolation
Video Latent Flow Matching: Optimal Polynomial Projections for Video Interpolation and Extrapolation
Yang Cao
Zhao Song
Chiwun Yang
VGen
144
3
0
01 Feb 2025
Statistical Finite Elements via Interacting Particle Langevin Dynamics
Statistical Finite Elements via Interacting Particle Langevin Dynamics
Alex Glyn-Davies
Connor Duffin
Ieva Kazlauskaite
Mark Girolami
O. Deniz Akyildiz
85
0
0
11 Sep 2024
Spacecraft inertial parameters estimation using time series clustering
  and reinforcement learning
Spacecraft inertial parameters estimation using time series clustering and reinforcement learning
Konstantinos Platanitis
M. Arana-Catania
Leonardo Capicchiano
Saurabh Upadhyay
Leonard Felicetti
63
0
0
06 Aug 2024
Revisiting semi-supervised training objectives for differentiable
  particle filters
Revisiting semi-supervised training objectives for differentiable particle filters
Jiaxi Li
John-Joseph Brady
Xiongjie Chen
Yunpeng Li
53
1
0
02 May 2024
Differentiable and Stable Long-Range Tracking of Multiple Posterior
  Modes
Differentiable and Stable Long-Range Tracking of Multiple Posterior Modes
Ali Younis
Erik B. Sudderth
61
4
0
12 Apr 2024
Online Identification of Stochastic Continuous-Time Wiener Models Using
  Sampled Data
Online Identification of Stochastic Continuous-Time Wiener Models Using Sampled Data
M. Abdalmoaty
Efe C. Balta
John Lygeros
Roy S. Smith
50
0
0
09 Mar 2024
Nesting Particle Filters for Experimental Design in Dynamical Systems
Nesting Particle Filters for Experimental Design in Dynamical Systems
Sahel Iqbal
Adrien Corenflos
Simo Särkkä
Hany Abdulsamad
74
2
0
12 Feb 2024
Risk-Sensitive Stochastic Optimal Control as Rao-Blackwellized Markovian
  Score Climbing
Risk-Sensitive Stochastic Optimal Control as Rao-Blackwellized Markovian Score Climbing
Hany Abdulsamad
Sahel Iqbal
Adrien Corenflos
Simo Särkkä
80
2
0
21 Dec 2023
Online Variational Sequential Monte Carlo
Online Variational Sequential Monte Carlo
Alessandro Mastrototaro
Jimmy Olsson
BDLOffRL
68
3
0
19 Dec 2023
Learning Differentiable Particle Filter on the Fly
Learning Differentiable Particle Filter on the Fly
Jiaxi Li
Xiongjie Chen
Yunpeng Li
58
2
0
10 Dec 2023
Unbiased and Multilevel Methods for a Class of Diffusions Partially
  Observed via Marked Point Processes
Unbiased and Multilevel Methods for a Class of Diffusions Partially Observed via Marked Point Processes
Miguel Alvarez
Ajay Jasra
Hamza Ruzayqat
48
0
0
16 Nov 2023
On Feynman--Kac training of partial Bayesian neural networks
On Feynman--Kac training of partial Bayesian neural networks
Zheng Zhao
Sebastian Mair
Thomas B. Schön
Jens Sjölund
74
0
0
30 Oct 2023
Inferring Inference
Inferring Inference
Rajkumar Vasudeva Raju
Zhe Li
Scott W. Linderman
Xaq Pitkow
76
1
0
04 Oct 2023
A State-Space Perspective on Modelling and Inference for Online Skill
  Rating
A State-Space Perspective on Modelling and Inference for Online Skill Rating
Samuel Duffield
Samuel Power
Lorenzo Rimella
86
6
0
04 Aug 2023
Sparse Graphical Linear Dynamical Systems
Sparse Graphical Linear Dynamical Systems
Émilie Chouzenoux
Victor Elvira
73
8
0
06 Jul 2023
Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space
  Models
Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models
Benjamin Cox
Victor Elvira
64
10
0
20 Jun 2023
Real-Time Variational Method for Learning Neural Trajectory and its
  Dynamics
Real-Time Variational Method for Learning Neural Trajectory and its Dynamics
Matthew Dowling
Yuan Zhao
Il Memming Park
BDLOffRL
69
6
0
18 May 2023
Designing Proposal Distributions for Particle Filters using Integrated
  Nested Laplace Approximation
Designing Proposal Distributions for Particle Filters using Integrated Nested Laplace Approximation
A. Amri
53
1
0
05 May 2023
Differentiable Bootstrap Particle Filters for Regime-Switching Models
Differentiable Bootstrap Particle Filters for Regime-Switching Models
Wenhan Li
Xiongjie Chen
Wenwu Wang
Victor Elvira
Yunpeng Li
74
6
0
20 Feb 2023
An overview of differentiable particle filters for data-adaptive
  sequential Bayesian inference
An overview of differentiable particle filters for data-adaptive sequential Bayesian inference
Xiongjie Chen
Yunpeng Li
78
15
0
19 Feb 2023
Sequential Bayesian Learning for Hidden Semi-Markov Models
Sequential Bayesian Learning for Hidden Semi-Markov Models
Patrick Aschermayr
K. Kalogeropoulos
88
0
0
25 Jan 2023
Particle-Based Score Estimation for State Space Model Learning in
  Autonomous Driving
Particle-Based Score Estimation for State Space Model Learning in Autonomous Driving
Angad Singh
Omar Makhlouf
Maximilian Igl
Joao Messias
Arnaud Doucet
Shimon Whiteson
97
2
0
14 Dec 2022
Nonlinear System Identification: Learning while respecting physical
  models using a sequential Monte Carlo method
Nonlinear System Identification: Learning while respecting physical models using a sequential Monte Carlo method
A. Wigren
Johan Wågberg
Fredrik Lindsten
A. Wills
Thomas B. Schon
45
11
0
26 Oct 2022
Online Probabilistic Model Identification using Adaptive Recursive MCMC
Online Probabilistic Model Identification using Adaptive Recursive MCMC
Pedram Agand
Mo Chen
H. Taghirad
67
4
0
23 Oct 2022
Expressivity of Hidden Markov Chains vs. Recurrent Neural Networks from
  a system theoretic viewpoint
Expressivity of Hidden Markov Chains vs. Recurrent Neural Networks from a system theoretic viewpoint
F. Desbouvries
Y. Petetin
Achille Salaün
BDL
43
1
0
17 Aug 2022
Can a latent Hawkes process be used for epidemiological modelling?
Can a latent Hawkes process be used for epidemiological modelling?
Stamatina Lamprinakou
Axel Gandy
E. McCoy
49
1
0
15 Aug 2022
A Case-Study of Sample-Based Bayesian Forecasting Algorithms
A Case-Study of Sample-Based Bayesian Forecasting Algorithms
Taylor R. Brown
AI4TS
11
0
0
05 Aug 2022
Inference of Regulatory Networks Through Temporally Sparse Data
Inference of Regulatory Networks Through Temporally Sparse Data
Mohammad Alali
Mahdi Imani
51
17
0
21 Jul 2022
Doubly-online changepoint detection for monitoring health status during
  sports activities
Doubly-online changepoint detection for monitoring health status during sports activities
M. Stival
M. Bernardi
P. Dellaportas
28
6
0
23 Jun 2022
Factored Conditional Filtering: Tracking States and Estimating
  Parameters in High-Dimensional Spaces
Factored Conditional Filtering: Tracking States and Estimating Parameters in High-Dimensional Spaces
Dawei Chen
Samuel Yang-Zhao
John Lloyd
K. S. Ng
AI4TS
41
1
0
05 Jun 2022
On off-line and on-line Bayesian filtering for uncertainty
  quantification of structural deterioration
On off-line and on-line Bayesian filtering for uncertainty quantification of structural deterioration
A. Kamariotis
Luca Sardi
I. Papaioannou
Eleni Chatzi
D. Štraub
OffRL
106
14
0
06 May 2022
DeepBayes -- an estimator for parameter estimation in stochastic
  nonlinear dynamical models
DeepBayes -- an estimator for parameter estimation in stochastic nonlinear dynamical models
Anubhab Ghosh
M. Abdalmoaty
Saikat Chatterjee
H. Hjalmarsson
BDL
18
3
0
04 May 2022
When Artificial Parameter Evolution Gets Real: Particle Filtering for
  Time-Varying Parameter Estimation in Deterministic Dynamical Systems
When Artificial Parameter Evolution Gets Real: Particle Filtering for Time-Varying Parameter Estimation in Deterministic Dynamical Systems
Andrea Arnold
46
6
0
31 Mar 2022
A Point Mass Proposal Method for Bayesian State-Space Model Fitting
A Point Mass Proposal Method for Bayesian State-Space Model Fitting
Mary Llewellyn
Ruth King
Victor Elvira
Gordon J. Ross
30
0
0
25 Mar 2022
Conditional Measurement Density Estimation in Sequential Monte Carlo via
  Normalizing Flow
Conditional Measurement Density Estimation in Sequential Monte Carlo via Normalizing Flow
Xiongjie Chen
Yunpeng Li
34
7
0
16 Mar 2022
Conditional Approximate Normalizing Flows for Joint Multi-Step
  Probabilistic Forecasting with Application to Electricity Demand
Conditional Approximate Normalizing Flows for Joint Multi-Step Probabilistic Forecasting with Application to Electricity Demand
Arec Jamgochian
Di Wu
Kunal Menda
Soyeon Jung
Mykel J. Kochenderfer
AI4TS
46
2
0
08 Jan 2022
The divide-and-conquer sequential Monte Carlo algorithm: theoretical
  properties and limit theorems
The divide-and-conquer sequential Monte Carlo algorithm: theoretical properties and limit theorems
Juan Kuntz
F. R. Crucinio
A. M. Johansen
73
11
0
29 Oct 2021
Warped Dynamic Linear Models for Time Series of Counts
Warped Dynamic Linear Models for Time Series of Counts
Brian King
Daniel R. Kowal
AI4TS
107
5
0
27 Oct 2021
Online Variational Filtering and Parameter Learning
Online Variational Filtering and Parameter Learning
Andrew Campbell
Yuyang Shi
Tom Rainforth
Arnaud Doucet
BDL
86
22
0
26 Oct 2021
Fast and numerically stable particle-based online additive smoothing:
  the AdaSmooth algorithm
Fast and numerically stable particle-based online additive smoothing: the AdaSmooth algorithm
Alessandro Mastrototaro
Jimmy Olsson
Johan Westerborn Alenlöv
14
8
0
01 Aug 2021
Differentiable Particle Filters through Conditional Normalizing Flow
Differentiable Particle Filters through Conditional Normalizing Flow
Xiongjie Chen
Hao Wen
Yunpeng Li
69
22
0
01 Jul 2021
Nested Variational Inference
Nested Variational Inference
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan-Willem van de Meent
BDL
80
21
0
21 Jun 2021
Unsupervised Neural Hidden Markov Models with a Continuous latent state
  space
Unsupervised Neural Hidden Markov Models with a Continuous latent state space
Firas Jarboui
Vianney Perchet
BDL
13
0
0
10 Jun 2021
Nested Gaussian filters for recursive Bayesian inference and nonlinear
  tracking in state space models
Nested Gaussian filters for recursive Bayesian inference and nonlinear tracking in state space models
Sara Pérez-Vieites
Joaquín Míguez
59
10
0
23 Mar 2021
Differentiable Particle Filtering via Entropy-Regularized Optimal
  Transport
Differentiable Particle Filtering via Entropy-Regularized Optimal Transport
Adrien Corenflos
James Thornton
George Deligiannidis
Arnaud Doucet
OT
91
70
0
15 Feb 2021
Sequential Monte Carlo algorithms for agent-based models of disease
  transmission
Sequential Monte Carlo algorithms for agent-based models of disease transmission
Nianqiao P. Ju
J. Heng
Pierre E. Jacob
19
10
0
28 Jan 2021
Fourier Series-Based Approximation of Time-Varying Parameters in
  Ordinary Differential Equations
Fourier Series-Based Approximation of Time-Varying Parameters in Ordinary Differential Equations
Anna Fitzpatrick
Molly Folino
Andrea Arnold
46
1
0
21 Jan 2021
A tutorial on spatiotemporal partially observed Markov process models
  via the R package spatPomp
A tutorial on spatiotemporal partially observed Markov process models via the R package spatPomp
Kidus Asfaw
Joonha Park
Aaron M. King
E. Ionides
57
3
0
04 Jan 2021
123
Next