ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.8695
  4. Cited By
On Particle Methods for Parameter Estimation in State-Space Models
v1v2 (latest)

On Particle Methods for Parameter Estimation in State-Space Models

30 December 2014
N. Kantas
Arnaud Doucet
Sumeetpal S. Singh
J. Maciejowski
Nicolas Chopin
ArXiv (abs)PDFHTML

Papers citing "On Particle Methods for Parameter Estimation in State-Space Models"

50 / 118 papers shown
Title
Optimized Auxiliary Particle Filters: adapting mixture proposals via
  convex optimization
Optimized Auxiliary Particle Filters: adapting mixture proposals via convex optimization
Nicola Branchini
Victor Elvira
84
19
0
18 Nov 2020
End-To-End Semi-supervised Learning for Differentiable Particle Filters
End-To-End Semi-supervised Learning for Differentiable Particle Filters
Hao Wen
Xiongjie Chen
Georgios Papagiannis
Conghui Hu
Yunpeng Li
65
17
0
11 Nov 2020
Joint Online Parameter Estimation and Optimal Sensor Placement for the
  Partially Observed Stochastic Advection-Diffusion Equation
Joint Online Parameter Estimation and Optimal Sensor Placement for the Partially Observed Stochastic Advection-Diffusion Equation
Louis Sharrock
N. Kantas
20
10
0
18 Sep 2020
Approximating Posterior Predictive Distributions by Averaging Output
  From Many Particle Filters
Approximating Posterior Predictive Distributions by Averaging Output From Many Particle Filters
Taylor R. Brown
16
2
0
27 Jun 2020
Scalable Identification of Partially Observed Systems with
  Certainty-Equivalent EM
Scalable Identification of Partially Observed Systems with Certainty-Equivalent EM
Kunal Menda
J. Becdelievre
Jayesh K. Gupta
I. Kroo
Mykel J. Kochenderfer
Zachary Manchester
23
7
0
20 Jun 2020
Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes
Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes
Manuel Haussmann
S. Gerwinn
Andreas Look
Barbara Rakitsch
M. Kandemir
86
16
0
17 Jun 2020
An algorithm for non-parametric estimation in state-space models
An algorithm for non-parametric estimation in state-space models
T. Chau
P. Ailliot
V. Monbet
13
10
0
16 Jun 2020
Real-Time Model Calibration with Deep Reinforcement Learning
Real-Time Model Calibration with Deep Reinforcement Learning
Yuan Tian
M. A. Chao
Chetan S. Kulkarni
K. Goebel
Olga Fink
AI4CE
65
49
0
07 Jun 2020
Coping With Simulators That Don't Always Return
Coping With Simulators That Don't Always Return
Andrew Warrington
Saeid Naderiparizi
Frank Wood
48
4
0
28 Mar 2020
Online Smoothing for Diffusion Processes Observed with Noise
Online Smoothing for Diffusion Processes Observed with Noise
S. Yonekura
A. Beskos
38
9
0
27 Mar 2020
Generalized Bayesian Filtering via Sequential Monte Carlo
Generalized Bayesian Filtering via Sequential Monte Carlo
Ayman Boustati
Ömer Deniz Akyildiz
Theodoros Damoulas
A. M. Johansen
65
4
0
23 Feb 2020
PF: A C++ Library for Fast Particle Filtering
PF: A C++ Library for Fast Particle Filtering
Taylor R. Brown
33
0
0
28 Jan 2020
Relational State-Space Model for Stochastic Multi-Object Systems
Relational State-Space Model for Stochastic Multi-Object Systems
Fan Yang
Ling Chen
Fan Zhou
Yusong Gao
Wei Cao
75
8
0
13 Jan 2020
Model uncertainty estimation using the expectation maximization
  algorithm and a particle flow filter
Model uncertainty estimation using the expectation maximization algorithm and a particle flow filter
M. M. Lucini
P. Leeuwen
M. Pulido
66
4
0
04 Nov 2019
Combined parameter and state inference with automatically calibrated ABC
Combined parameter and state inference with automatically calibrated ABC
Anthony Ebert
Pierre Pudlo
Kerrie Mengersen
P. Wu
Christopher C. Drovandi
45
1
0
31 Oct 2019
Probabilistic sequential matrix factorization
Probabilistic sequential matrix factorization
Ömer Deniz Akyildiz
Gerrit J. J. van den Burg
Theodoros Damoulas
M. Steel
42
2
0
09 Oct 2019
Stochastic quasi-Newton with line-search regularization
Stochastic quasi-Newton with line-search regularization
A. Wills
Thomas B. Schon
ODL
68
21
0
03 Sep 2019
The Virtual Patch Clamp: Imputing C. elegans Membrane Potentials from
  Calcium Imaging
The Virtual Patch Clamp: Imputing C. elegans Membrane Potentials from Calcium Imaging
Andrew Warrington
A. Spencer
Frank Wood
31
2
0
24 Jul 2019
A Kalman particle filter for online parameter estimation with
  applications to affine models
A Kalman particle filter for online parameter estimation with applications to affine models
Jian He
Asma Khedher
Peter Spreij
43
6
0
21 May 2019
Unbiased Smoothing using Particle Independent Metropolis-Hastings
Unbiased Smoothing using Particle Independent Metropolis-Hastings
Lawrence Middleton
George Deligiannidis
Arnaud Doucet
Pierre E. Jacob
69
22
0
05 Feb 2019
Stochastic Gradient MCMC for Nonlinear State Space Models
Stochastic Gradient MCMC for Nonlinear State Space Models
Christopher Aicher
Srshti Putcha
Christopher Nemeth
Paul Fearnhead
E. Fox
BDL
64
8
0
29 Jan 2019
Bias of Particle Approximations to Optimal Filter Derivative
Bias of Particle Approximations to Optimal Filter Derivative
V. Tadic
Arnaud Doucet
34
1
0
25 Jun 2018
Accelerating delayed-acceptance Markov chain Monte Carlo algorithms
Accelerating delayed-acceptance Markov chain Monte Carlo algorithms
Samuel Wiqvist
Umberto Picchini
J. Forman
Kresten Lindorff-Larsen
Wouter Boomsma
38
8
0
15 Jun 2018
Parameter Learning and Change Detection Using a Particle Filter With
  Accelerated Adaptation
Parameter Learning and Change Detection Using a Particle Filter With Accelerated Adaptation
Karol Gellert
Erik Schlögl
40
3
0
14 Jun 2018
Scalable Bayesian Learning for State Space Models using Variational
  Inference with SMC Samplers
Scalable Bayesian Learning for State Space Models using Variational Inference with SMC Samplers
Marcel Hirt
P. Dellaportas
BDL
74
10
0
23 May 2018
Improved and Scalable Online Learning of Spatial Concepts and Language
  Models with Mapping
Improved and Scalable Online Learning of Spatial Concepts and Language Models with Mapping
Akira Taniguchi
Y. Hagiwara
T. Taniguchi
T. Inamura
64
27
0
09 Mar 2018
Stochastic quasi-Newton with adaptive step lengths for large-scale
  problems
Stochastic quasi-Newton with adaptive step lengths for large-scale problems
A. Wills
Thomas B. Schon
61
9
0
12 Feb 2018
Improving the particle filter in high dimensions using conjugate
  artificial process noise
Improving the particle filter in high dimensions using conjugate artificial process noise
A. Wigren
Lawrence M. Murray
Fredrik Lindsten
23
9
0
22 Jan 2018
Particle-based, online estimation of tangent filters with application to
  parameter estimation in nonlinear state-space models
Particle-based, online estimation of tangent filters with application to parameter estimation in nonlinear state-space models
Jimmy Olsson
Johan Westerborn Alenlöv
64
10
0
22 Dec 2017
Particle Filters and Data Assimilation
Particle Filters and Data Assimilation
Paul Fearnhead
H. Kunsch
83
82
0
13 Sep 2017
A probabilistic scheme for joint parameter estimation and state
  prediction in complex dynamical systems
A probabilistic scheme for joint parameter estimation and state prediction in complex dynamical systems
Sara Pérez-Vieites
I. P. Mariño
Joaquín Míguez
76
16
0
11 Aug 2017
Latent Parameter Estimation in Fusion Networks Using Separable
  Likelihoods
Latent Parameter Estimation in Fusion Networks Using Separable Likelihoods
Murat Üney
B. Mulgrew
Daniel E. Clark
FedML
28
14
0
02 Aug 2017
Identification of multi-object dynamical systems: consistency and Fisher
  information
Identification of multi-object dynamical systems: consistency and Fisher information
J. Houssineau
Sumeetpal S. Singh
Ajay Jasra
52
4
0
14 Jul 2017
Fast approximate Bayesian inference for stable differential equation
  models
Fast approximate Bayesian inference for stable differential equation models
Philip Maybank
I. Bojak
R. Everitt
71
9
0
02 Jun 2017
A critical analysis of resampling strategies for the regularized
  particle filter
A critical analysis of resampling strategies for the regularized particle filter
Pierre Carmier
Olexiy O. Kyrgyzov
P. Cournède
18
2
0
11 May 2017
Advanced Multilevel Monte Carlo Methods
Advanced Multilevel Monte Carlo Methods
Ajay Jasra
K. Law
C. Suciu
56
16
0
24 Apr 2017
On the construction of probabilistic Newton-type algorithms
On the construction of probabilistic Newton-type algorithms
A. Wills
Thomas B. Schon
58
13
0
05 Apr 2017
Sequential Monte Carlo Methods in the nimble R Package
Sequential Monte Carlo Methods in the nimble R Package
Nick Michaud
P. de Valpine
Daniel Turek
C. Paciorek
D. Nguyen
73
6
0
17 Mar 2017
Inference via low-dimensional couplings
Inference via low-dimensional couplings
Alessio Spantini
Daniele Bigoni
Youssef Marzouk
134
119
0
17 Mar 2017
Particle Value Functions
Particle Value Functions
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Arnaud Doucet
A. Mnih
Yee Whye Teh
83
15
0
16 Mar 2017
Probabilistic learning of nonlinear dynamical systems using sequential
  Monte Carlo
Probabilistic learning of nonlinear dynamical systems using sequential Monte Carlo
Thomas B. Schon
Andreas Svensson
Lawrence M. Murray
Fredrik Lindsten
56
41
0
07 Mar 2017
Analysis of a nonlinear importance sampling scheme for Bayesian
  parameter estimation in state-space models
Analysis of a nonlinear importance sampling scheme for Bayesian parameter estimation in state-space models
Joaquín Míguez
I. P. Mariño
M. A. Vázquez
35
11
0
10 Feb 2017
Learning of state-space models with highly informative observations: a
  tempered Sequential Monte Carlo solution
Learning of state-space models with highly informative observations: a tempered Sequential Monte Carlo solution
Andreas Svensson
Thomas B. Schon
Fredrik Lindsten
58
17
0
06 Feb 2017
Smoothing with Couplings of Conditional Particle Filters
Smoothing with Couplings of Conditional Particle Filters
Pierre E. Jacob
Fredrik Lindsten
Thomas B. Schon
125
55
0
08 Jan 2017
On embedded hidden Markov models and particle Markov chain Monte Carlo
  methods
On embedded hidden Markov models and particle Markov chain Monte Carlo methods
Axel Finke
Arnaud Doucet
A. M. Johansen
56
11
0
27 Oct 2016
Likelihood-free stochastic approximation EM for inference in complex
  models
Likelihood-free stochastic approximation EM for inference in complex models
Umberto Picchini
TPM
34
5
0
12 Sep 2016
Approximate Smoothing and Parameter Estimation in High-Dimensional
  State-Space Models
Approximate Smoothing and Parameter Estimation in High-Dimensional State-Space Models
Axel Finke
Sumeetpal S. Singh
96
18
0
28 Jun 2016
Coupling of Particle Filters
Coupling of Particle Filters
Pierre E. Jacob
Fredrik Lindsten
Thomas B. Schon
94
24
0
03 Jun 2016
On Coupling Particle Filter Trajectories
On Coupling Particle Filter Trajectories
Deborshee Sen
Alexandre Hoang Thiery
Ajay Jasra
99
21
0
03 Jun 2016
On the two-filter approximations of marginal smoothing distributions in
  general state space models
On the two-filter approximations of marginal smoothing distributions in general state space models
T. Nguyen
Sylvain Le Corff
Eric Moulines
48
8
0
27 May 2016
Previous
123
Next