ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.05700
  4. Cited By
Scalable Bayesian Optimization Using Deep Neural Networks

Scalable Bayesian Optimization Using Deep Neural Networks

19 February 2015
Jasper Snoek
Oren Rippel
Kevin Swersky
Ryan Kiros
N. Satish
N. Sundaram
Md. Mostofa Ali Patwary
P. Prabhat
Ryan P. Adams
    BDL
    UQCV
ArXivPDFHTML

Papers citing "Scalable Bayesian Optimization Using Deep Neural Networks"

50 / 132 papers shown
Title
Circinus: Efficient Query Planner for Compound ML Serving
Circinus: Efficient Query Planner for Compound ML Serving
Banruo Liu
Wei-Yu Lin
Minghao Fang
Yihan Jiang
Fan Lai
LRM
34
0
0
23 Apr 2025
Frozen Layers: Memory-efficient Many-fidelity Hyperparameter Optimization
Frozen Layers: Memory-efficient Many-fidelity Hyperparameter Optimization
Timur Carstensen
Neeratyoy Mallik
Frank Hutter
Martin Rapp
AI4CE
24
0
0
14 Apr 2025
Causal Discovery via Bayesian Optimization
Bao Duong
Sunil Gupta
Thin Nguyen
44
0
0
28 Jan 2025
A RankNet-Inspired Surrogate-Assisted Hybrid Metaheuristic for Expensive Coverage Optimization
A RankNet-Inspired Surrogate-Assisted Hybrid Metaheuristic for Expensive Coverage Optimization
Tongyu Wu
Changhao Miao
Yuntian Zhang
Chen Chen
Chen Chen
38
0
0
13 Jan 2025
Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes
Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes
Yunyue Wei
Vincent Zhuang
Saraswati Soedarmadji
Yanan Sui
120
0
0
31 Dec 2024
Respecting the limit:Bayesian optimization with a bound on the optimal value
Respecting the limit:Bayesian optimization with a bound on the optimal value
Hanyang Wang
Juergen Branke
Matthias Poloczek
33
0
0
07 Nov 2024
Global Optimisation of Black-Box Functions with Generative Models in the
  Wasserstein Space
Global Optimisation of Black-Box Functions with Generative Models in the Wasserstein Space
Tigran Ramazyan
M. Hushchyn
D. Derkach
29
0
0
16 Jul 2024
Linearization Turns Neural Operators into Function-Valued Gaussian Processes
Linearization Turns Neural Operators into Function-Valued Gaussian Processes
Emilia Magnani
Marvin Pfortner
Tobias Weber
Philipp Hennig
UQCV
63
1
0
07 Jun 2024
Gradients of Functions of Large Matrices
Gradients of Functions of Large Matrices
Nicholas Krämer
Pablo Moreno-Muñoz
Hrittik Roy
Søren Hauberg
32
0
0
27 May 2024
Predictive Churn with the Set of Good Models
Predictive Churn with the Set of Good Models
J. Watson-Daniels
Flavio du Pin Calmon
Alexander DÁmour
Carol Xuan Long
David C. Parkes
Berk Ustun
79
7
0
12 Feb 2024
On the development of a practical Bayesian optimisation algorithm for
  expensive experiments and simulations with changing environmental conditions
On the development of a practical Bayesian optimisation algorithm for expensive experiments and simulations with changing environmental conditions
Mike Diessner
Kevin J. Wilson
Richard D. Whalley
19
0
0
05 Feb 2024
Latent Conservative Objective Models for Data-Driven Crystal Structure
  Prediction
Latent Conservative Objective Models for Data-Driven Crystal Structure Prediction
Han Qi
Xinyang Geng
Stefano Rando
Iku Ohama
Aviral Kumar
Sergey Levine
DiffM
39
2
0
16 Oct 2023
Asynchronous Evolution of Deep Neural Network Architectures
Asynchronous Evolution of Deep Neural Network Architectures
J. Liang
H. Shahrzad
Risto Miikkulainen
23
0
0
08 Aug 2023
Model-Assisted Probabilistic Safe Adaptive Control With Meta-Bayesian
  Learning
Model-Assisted Probabilistic Safe Adaptive Control With Meta-Bayesian Learning
Shengbo Wang
Ke Li
Yin Yang
Yuting Cao
Tingwen Huang
S. Wen
21
4
0
03 Jul 2023
Quick-Tune: Quickly Learning Which Pretrained Model to Finetune and How
Quick-Tune: Quickly Learning Which Pretrained Model to Finetune and How
Sebastian Pineda Arango
Fabio Ferreira
Arlind Kadra
Frank Hutter
Frank Hutter Josif Grabocka
29
15
0
06 Jun 2023
Deep Ranking Ensembles for Hyperparameter Optimization
Deep Ranking Ensembles for Hyperparameter Optimization
Abdus Salam Khazi
Sebastian Pineda Arango
Josif Grabocka
BDL
31
7
0
27 Mar 2023
MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning
MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning
Adam X. Yang
Laurence Aitchison
Henry B. Moss
24
4
0
22 Feb 2023
Transfer Learning for Bayesian Optimization: A Survey
Transfer Learning for Bayesian Optimization: A Survey
Tianyi Bai
Yang Li
Yu Shen
Xinyi Zhang
Wentao Zhang
Bin Cui
BDL
32
29
0
12 Feb 2023
A Study of Left Before Treatment Complete Emergency Department Patients:
  An Optimized Explanatory Machine Learning Framework
A Study of Left Before Treatment Complete Emergency Department Patients: An Optimized Explanatory Machine Learning Framework
Abdulaziz Ahmed
Khalid Y. Aram
S. Tutun
14
0
0
22 Dec 2022
An Efficient Framework for Monitoring Subgroup Performance of Machine
  Learning Systems
An Efficient Framework for Monitoring Subgroup Performance of Machine Learning Systems
Huong Ha
19
0
0
16 Dec 2022
Error-Aware B-PINNs: Improving Uncertainty Quantification in Bayesian
  Physics-Informed Neural Networks
Error-Aware B-PINNs: Improving Uncertainty Quantification in Bayesian Physics-Informed Neural Networks
Olga Graf
P. Flores
P. Protopapas
K. Pichara
PINN
30
6
0
14 Dec 2022
Pareto Set Learning for Expensive Multi-Objective Optimization
Pareto Set Learning for Expensive Multi-Objective Optimization
Xi Lin
Zhiyuan Yang
Xiao-Yan Zhang
Qingfu Zhang
26
54
0
16 Oct 2022
Joint Entropy Search for Multi-objective Bayesian Optimization
Joint Entropy Search for Multi-objective Bayesian Optimization
Ben Tu
Axel Gandy
N. Kantas
B. Shafei
14
38
0
06 Oct 2022
Generalizing Bayesian Optimization with Decision-theoretic Entropies
Generalizing Bayesian Optimization with Decision-theoretic Entropies
W. Neiswanger
Lantao Yu
Shengjia Zhao
Chenlin Meng
Stefano Ermon
UQCV
43
11
0
04 Oct 2022
The Neural Process Family: Survey, Applications and Perspectives
The Neural Process Family: Survey, Applications and Perspectives
Saurav Jha
Dong Gong
Xuesong Wang
Richard E. Turner
L. Yao
BDL
70
24
0
01 Sep 2022
Fast Bayesian Optimization of Needle-in-a-Haystack Problems using
  Zooming Memory-Based Initialization (ZoMBI)
Fast Bayesian Optimization of Needle-in-a-Haystack Problems using Zooming Memory-Based Initialization (ZoMBI)
Alexander E. Siemenn
Zekun Ren
Qianxiao Li
Tonio Buonassisi
36
23
0
26 Aug 2022
Task Selection for AutoML System Evaluation
Task Selection for AutoML System Evaluation
Jon Lorraine
Nihesh Anderson
Chansoo Lee
Quentin de Laroussilhe
Mehadi Hassen
44
4
0
26 Aug 2022
Bayesian Optimization Augmented with Actively Elicited Expert Knowledge
Bayesian Optimization Augmented with Actively Elicited Expert Knowledge
Daolang Huang
Louis Filstroff
P. Mikkola
Runkai Zheng
Samuel Kaski
13
5
0
18 Aug 2022
Bayesian Optimization with Informative Covariance
Bayesian Optimization with Informative Covariance
Afonso Eduardo
Michael U. Gutmann
19
3
0
04 Aug 2022
Approximate Bayesian Neural Operators: Uncertainty Quantification for
  Parametric PDEs
Approximate Bayesian Neural Operators: Uncertainty Quantification for Parametric PDEs
Emilia Magnani
Nicholas Kramer
Runa Eschenhagen
Lorenzo Rosasco
Philipp Hennig
UQCV
BDL
13
9
0
02 Aug 2022
A Deep Learning Approach for the solution of Probability Density
  Evolution of Stochastic Systems
A Deep Learning Approach for the solution of Probability Density Evolution of Stochastic Systems
S. Pourtakdoust
Amir H. Khodabakhsh
25
12
0
05 Jul 2022
Recent Advances in Bayesian Optimization
Recent Advances in Bayesian Optimization
Xilu Wang
Yaochu Jin
Sebastian Schmitt
Markus Olhofer
38
197
0
07 Jun 2022
TransBO: Hyperparameter Optimization via Two-Phase Transfer Learning
TransBO: Hyperparameter Optimization via Two-Phase Transfer Learning
Yang Li
Yu Shen
Huaijun Jiang
Wentao Zhang
Zhi-Xin Yang
Ce Zhang
Bin Cui
20
15
0
06 Jun 2022
Transfer Learning based Search Space Design for Hyperparameter Tuning
Transfer Learning based Search Space Design for Hyperparameter Tuning
Yang Li
Yu Shen
Huaijun Jiang
Tianyi Bai
Wentao Zhang
Ce Zhang
Bin Cui
22
13
0
06 Jun 2022
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
A. Maraval
Matthieu Zimmer
Antoine Grosnit
Rasul Tutunov
Jun Wang
H. Ammar
25
2
0
27 May 2022
Interpolating Compressed Parameter Subspaces
Interpolating Compressed Parameter Subspaces
Siddhartha Datta
N. Shadbolt
32
5
0
19 May 2022
ODBO: Bayesian Optimization with Search Space Prescreening for Directed
  Protein Evolution
ODBO: Bayesian Optimization with Search Space Prescreening for Directed Protein Evolution
Lixue Cheng
Ziyi Yang
Chang-Yu Hsieh
Ben Liao
Shengyu Zhang
25
6
0
19 May 2022
A model aggregation approach for high-dimensional large-scale
  optimization
A model aggregation approach for high-dimensional large-scale optimization
Haowei Wang
Ercong Zhang
S. Ng
Giulia Pedrielli
14
1
0
16 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via
  Distance-Awareness
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
16
48
0
01 May 2022
PACE: A Parallelizable Computation Encoder for Directed Acyclic Graphs
PACE: A Parallelizable Computation Encoder for Directed Acyclic Graphs
Zehao Dong
Muhan Zhang
Fuhai Li
Yixin Chen
CML
GNN
33
17
0
19 Mar 2022
Learning Where To Look -- Generative NAS is Surprisingly Efficient
Learning Where To Look -- Generative NAS is Surprisingly Efficient
Jovita Lukasik
Steffen Jung
M. Keuper
21
15
0
16 Mar 2022
Model soups: averaging weights of multiple fine-tuned models improves
  accuracy without increasing inference time
Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
Mitchell Wortsman
Gabriel Ilharco
S. Gadre
Rebecca Roelofs
Raphael Gontijo-Lopes
...
Hongseok Namkoong
Ali Farhadi
Y. Carmon
Simon Kornblith
Ludwig Schmidt
MoMe
46
909
1
10 Mar 2022
Tensor Programs V: Tuning Large Neural Networks via Zero-Shot
  Hyperparameter Transfer
Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer
Greg Yang
J. E. Hu
Igor Babuschkin
Szymon Sidor
Xiaodong Liu
David Farhi
Nick Ryder
J. Pachocki
Weizhu Chen
Jianfeng Gao
24
148
0
07 Mar 2022
Scalable Uncertainty Quantification for Deep Operator Networks using
  Randomized Priors
Scalable Uncertainty Quantification for Deep Operator Networks using Randomized Priors
Yibo Yang
Georgios Kissas
P. Perdikaris
BDL
UQCV
20
40
0
06 Mar 2022
Amortized Proximal Optimization
Amortized Proximal Optimization
Juhan Bae
Paul Vicol
Jeff Z. HaoChen
Roger C. Grosse
ODL
25
14
0
28 Feb 2022
Design-Bench: Benchmarks for Data-Driven Offline Model-Based
  Optimization
Design-Bench: Benchmarks for Data-Driven Offline Model-Based Optimization
Brandon Trabucco
Xinyang Geng
Aviral Kumar
Sergey Levine
OffRL
16
95
0
17 Feb 2022
Maximum Likelihood Uncertainty Estimation: Robustness to Outliers
Maximum Likelihood Uncertainty Estimation: Robustness to Outliers
Deebul Nair
Nico Hochgeschwender
Miguel A. Olivares-Mendez
OOD
22
7
0
03 Feb 2022
Optimal Regret Is Achievable with Bounded Approximate Inference Error:
  An Enhanced Bayesian Upper Confidence Bound Framework
Optimal Regret Is Achievable with Bounded Approximate Inference Error: An Enhanced Bayesian Upper Confidence Bound Framework
Ziyi Huang
H. Lam
A. Meisami
Haofeng Zhang
34
4
0
31 Jan 2022
Top-K Ranking Deep Contextual Bandits for Information Selection Systems
Top-K Ranking Deep Contextual Bandits for Information Selection Systems
Jade Freeman
Michael Rawson
14
2
0
28 Jan 2022
Thinking inside the box: A tutorial on grey-box Bayesian optimization
Thinking inside the box: A tutorial on grey-box Bayesian optimization
Raul Astudillo
P. Frazier
15
35
0
02 Jan 2022
123
Next