Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.05700
Cited By
Scalable Bayesian Optimization Using Deep Neural Networks
19 February 2015
Jasper Snoek
Oren Rippel
Kevin Swersky
Ryan Kiros
N. Satish
N. Sundaram
Md. Mostofa Ali Patwary
P. Prabhat
Ryan P. Adams
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Scalable Bayesian Optimization Using Deep Neural Networks"
50 / 132 papers shown
Title
Online Calibrated and Conformal Prediction Improves Bayesian Optimization
Shachi Deshpande
Charles Marx
Volodymyr Kuleshov
13
7
0
08 Dec 2021
Differentiable Projection for Constrained Deep Learning
Dou Huang
Haoran Zhang
Xuan Song
Ryosuke Shibasaki
20
2
0
21 Nov 2021
Merging Models with Fisher-Weighted Averaging
Michael Matena
Colin Raffel
FedML
MoMe
27
348
0
18 Nov 2021
RoMA: Robust Model Adaptation for Offline Model-based Optimization
Sihyun Yu
Sungsoo Ahn
Le Song
Jinwoo Shin
OffRL
16
31
0
27 Oct 2021
Data-Driven Offline Optimization For Architecting Hardware Accelerators
Aviral Kumar
Amir Yazdanbakhsh
Milad Hashemi
Kevin Swersky
Sergey Levine
25
36
0
20 Oct 2021
Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation
Ross M. Clarke
E. T. Oldewage
José Miguel Hernández-Lobato
13
9
0
20 Oct 2021
Improving Hyperparameter Optimization by Planning Ahead
H. Jomaa
Jonas K. Falkner
Lars Schmidt-Thieme
14
0
0
15 Oct 2021
SetMargin Loss applied to Deep Keystroke Biometrics with Circle Packing Interpretation
Aythami Morales
Julian Fierrez
A. Acien
Ruben Tolosana
Ignacio Serna
21
20
0
02 Sep 2021
Sparse Bayesian Deep Learning for Dynamic System Identification
Hongpeng Zhou
Chahine Ibrahim
W. Zheng
Wei Pan
BDL
13
25
0
27 Jul 2021
Conservative Objective Models for Effective Offline Model-Based Optimization
Brandon Trabucco
Aviral Kumar
Xinyang Geng
Sergey Levine
OffRL
25
86
0
14 Jul 2021
Laplace Redux -- Effortless Bayesian Deep Learning
Erik A. Daxberger
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Matthias Bauer
Philipp Hennig
BDL
UQCV
33
288
0
28 Jun 2021
JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data
Kourosh Hakhamaneshi
Pieter Abbeel
Vladimir M. Stojanović
Aditya Grover
17
10
0
02 Jun 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
29
124
0
14 May 2021
Deep Learning for Bayesian Optimization of Scientific Problems with High-Dimensional Structure
Samuel Kim
Peter Y. Lu
Charlotte Loh
Jamie Smith
Jasper Snoek
M. Soljavcić
BDL
AI4CE
63
17
0
23 Apr 2021
Fast Design Space Exploration of Nonlinear Systems: Part I
S. Narain
Emily Mak
Dana Chee
Brendan Englot
K. Pochiraju
N. Jha
Karthik Narayan
17
5
0
05 Apr 2021
Bayesian Deep Basis Fitting for Depth Completion with Uncertainty
Chao Qu
Wenxin Liu
Camillo J. Taylor
UQCV
BDL
17
31
0
29 Mar 2021
CATE: Computation-aware Neural Architecture Encoding with Transformers
Shen Yan
Kaiqiang Song
Z. Feng
Mi Zhang
22
24
0
14 Feb 2021
A Population-based Hybrid Approach to Hyperparameter Optimization for Neural Networks
Marcello Serqueira
Israel Mendonça
Eduardo Bezerra
6
19
0
22 Nov 2020
Delta-STN: Efficient Bilevel Optimization for Neural Networks using Structured Response Jacobians
Juhan Bae
Roger C. Grosse
16
24
0
26 Oct 2020
Beyond Point Estimate: Inferring Ensemble Prediction Variation from Neuron Activation Strength in Recommender Systems
Zhe Chen
Yuyan Wang
Dong Lin
D. Cheng
Lichan Hong
Ed H. Chi
Claire Cui
28
16
0
17 Aug 2020
Deep Bayesian Bandits: Exploring in Online Personalized Recommendations
Dalin Guo
S. Ktena
Ferenc Huszár
Pranay K. Myana
Wenzhe Shi
Alykhan Tejani
OffRL
17
39
0
03 Aug 2020
An Asymptotically Optimal Multi-Armed Bandit Algorithm and Hyperparameter Optimization
Yimin Huang
Yujun Li
Hanrong Ye
Zhenguo Li
Zhihua Zhang
22
7
0
11 Jul 2020
Hyperparameter Ensembles for Robustness and Uncertainty Quantification
F. Wenzel
Jasper Snoek
Dustin Tran
Rodolphe Jenatton
UQCV
22
203
0
24 Jun 2020
Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using Multi-Headed Auxiliary Networks
Sujay Thakur
Cooper Lorsung
Yaniv Yacoby
Finale Doshi-Velez
Weiwei Pan
BDL
UQCV
25
4
0
21 Jun 2020
Likelihood-Free Inference with Deep Gaussian Processes
Alexander Aushev
Henri Pesonen
Markus Heinonen
J. Corander
Samuel Kaski
GP
20
10
0
18 Jun 2020
Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?
Shen Yan
Yu Zheng
Wei Ao
Xiao Zeng
Mi Zhang
SSL
AI4CE
30
99
0
12 Jun 2020
TS-UCB: Improving on Thompson Sampling With Little to No Additional Computation
Jackie Baek
Vivek F. Farias
22
9
0
11 Jun 2020
Fair Bayesian Optimization
Valerio Perrone
Michele Donini
Muhammad Bilal Zafar
Robin Schmucker
K. Kenthapadi
Cédric Archambeau
FaML
11
83
0
09 Jun 2020
AdaDeep: A Usage-Driven, Automated Deep Model Compression Framework for Enabling Ubiquitous Intelligent Mobiles
Sicong Liu
Junzhao Du
Kaiming Nan
Zimu Zhou
Zhangyang Wang
Yingyan Lin
19
30
0
08 Jun 2020
Gryffin: An algorithm for Bayesian optimization of categorical variables informed by expert knowledge
Florian Hase
Matteo Aldeghi
Riley J. Hickman
L. Roch
Alán Aspuru-Guzik
43
104
0
26 Mar 2020
ENTMOOT: A Framework for Optimization over Ensemble Tree Models
Alexander Thebelt
Jan Kronqvist
Miten Mistry
Robert M. Lee
Nathan Sudermann-Merx
Ruth Misener
21
54
0
10 Mar 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
25
277
0
24 Feb 2020
Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence
S. Raschka
Joshua Patterson
Corey J. Nolet
AI4CE
16
482
0
12 Feb 2020
Debugging Machine Learning Pipelines
Raoni Lourenço
J. Freire
D. Shasha
AI4CE
8
28
0
11 Feb 2020
Noisy-Input Entropy Search for Efficient Robust Bayesian Optimization
Lukas P. Frohlich
Edgar D. Klenske
Julia Vinogradska
Christian Daniel
M. Zeilinger
40
36
0
07 Feb 2020
Model Inversion Networks for Model-Based Optimization
Aviral Kumar
Sergey Levine
OffRL
22
93
0
31 Dec 2019
BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search
Colin White
W. Neiswanger
Yash Savani
BDL
26
313
0
25 Oct 2019
Optimizing electrode positions in 2D Electrical Impedance Tomography using deep learning
D. Smyl
Dong Liu
16
34
0
21 Oct 2019
Sketch-Specific Data Augmentation for Freehand Sketch Recognition
Ying Zheng
H. Yao
Xiaoshuai Sun
Shengping Zhang
Sicheng Zhao
Fatih Porikli
22
15
0
14 Oct 2019
Scalable Global Optimization via Local Bayesian Optimization
Samyam Rajbhandari
Michael Pearce
J. Gardner
Ryan D. Turner
Matthias Poloczek
16
447
0
03 Oct 2019
ReNAS:Relativistic Evaluation of Neural Architecture Search
Yixing Xu
Yunhe Wang
Avishkar Bhoopchand
Christopher Mattern
A. Grabska-Barwinska
Chunjing Xu
Chang Xu
20
81
0
30 Sep 2019
Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning
Valerio Perrone
Huibin Shen
Matthias Seeger
Cédric Archambeau
Rodolphe Jenatton
17
96
0
27 Sep 2019
AutoML: A Survey of the State-of-the-Art
Xin He
Kaiyong Zhao
X. Chu
17
1,418
0
02 Aug 2019
Mixed-Variable Bayesian Optimization
Erik A. Daxberger
Anastasia Makarova
M. Turchetta
Andreas Krause
16
50
0
02 Jul 2019
Hyp-RL : Hyperparameter Optimization by Reinforcement Learning
H. Jomaa
Josif Grabocka
Lars Schmidt-Thieme
15
65
0
27 Jun 2019
An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning
Yaoyao Liu
Bernt Schiele
Qianru Sun
BDL
25
128
0
17 Apr 2019
Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions
M. Mackay
Paul Vicol
Jonathan Lorraine
D. Duvenaud
Roger C. Grosse
23
164
0
07 Mar 2019
Robust Grasp Planning Over Uncertain Shape Completions
Jens Lundell
Francesco Verdoja
Ville Kyrki
3DPC
17
57
0
02 Mar 2019
Bayesian Adversarial Spheres: Bayesian Inference and Adversarial Examples in a Noiseless Setting
Artur Bekasov
Iain Murray
AAML
BDL
12
14
0
29 Nov 2018
Practical Design Space Exploration
Luigi Nardi
D. Koeplinger
K. Olukotun
8
86
0
11 Oct 2018
Previous
1
2
3
Next