ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.05767
  4. Cited By
Automatic differentiation in machine learning: a survey

Automatic differentiation in machine learning: a survey

20 February 2015
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
    PINN
    AI4CE
    ODL
ArXivPDFHTML

Papers citing "Automatic differentiation in machine learning: a survey"

19 / 319 papers shown
Title
GPdoemd: a Python package for design of experiments for model
  discrimination
GPdoemd: a Python package for design of experiments for model discrimination
Simon Olofsson
Lukas Hebing
Sebastian Niedenführ
M. Deisenroth
Ruth Misener
19
18
0
05 Oct 2018
Stochastic Variational Optimization
Stochastic Variational Optimization
Thomas Bird
Julius Kunze
David Barber
DRL
12
14
0
13 Sep 2018
Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework
  for Assimilating Flow Visualization Data
Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework for Assimilating Flow Visualization Data
M. Raissi
A. Yazdani
George Karniadakis
AI4CE
PINN
13
158
0
13 Aug 2018
Efficient Probabilistic Inference in the Quest for Physics Beyond the
  Standard Model
Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model
A. G. Baydin
Lukas Heinrich
W. Bhimji
Lei Shao
Saeid Naderiparizi
...
Philip Torr
Victor W. Lee
P. Prabhat
Kyle Cranmer
Frank D. Wood
26
31
0
20 Jul 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
89
4,929
0
19 Jun 2018
Forward-Backward Stochastic Neural Networks: Deep Learning of
  High-dimensional Partial Differential Equations
Forward-Backward Stochastic Neural Networks: Deep Learning of High-dimensional Partial Differential Equations
M. Raissi
15
183
0
19 Apr 2018
Deep Generative Model for Joint Alignment and Word Representation
Deep Generative Model for Joint Alignment and Word Representation
Miguel Rios
Wilker Aziz
K. Simaán
33
4
0
16 Feb 2018
Deep Hidden Physics Models: Deep Learning of Nonlinear Partial
  Differential Equations
Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations
M. Raissi
PINN
AI4CE
12
744
0
20 Jan 2018
Physics Informed Deep Learning (Part II): Data-driven Discovery of
  Nonlinear Partial Differential Equations
Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
PINN
AI4CE
24
607
0
28 Nov 2017
Online Learning Rate Adaptation with Hypergradient Descent
Online Learning Rate Adaptation with Hypergradient Descent
A. G. Baydin
R. Cornish
David Martínez-Rubio
Mark W. Schmidt
Frank D. Wood
ODL
22
242
0
14 Mar 2017
Getting Started with Neural Models for Semantic Matching in Web Search
Getting Started with Neural Models for Semantic Matching in Web Search
Kezban Dilek Onal
I. S. Altingövde
Pinar Senkul
Maarten de Rijke
VLM
3DV
18
9
0
08 Nov 2016
AutoGP: Exploring the Capabilities and Limitations of Gaussian Process
  Models
AutoGP: Exploring the Capabilities and Limitations of Gaussian Process Models
K. Krauth
Edwin V. Bonilla
Kurt Cutajar
Maurizio Filippone
GP
BDL
14
54
0
18 Oct 2016
RETURNN: The RWTH Extensible Training framework for Universal Recurrent
  Neural Networks
RETURNN: The RWTH Extensible Training framework for Universal Recurrent Neural Networks
P. Doetsch
Albert Zeyer
P. Voigtlaender
Ilya Kulikov
Ralf Schluter
Hermann Ney
13
74
0
02 Aug 2016
Higher-Order Factorization Machines
Higher-Order Factorization Machines
Mathieu Blondel
Akinori Fujino
N. Ueda
Masakazu Ishihata
20
196
0
25 Jul 2016
Asymptotically exact inference in differentiable generative models
Asymptotically exact inference in differentiable generative models
Matthew M. Graham
Amos J. Storkey
BDL
21
33
0
25 May 2016
Pymanopt: A Python Toolbox for Optimization on Manifolds using Automatic
  Differentiation
Pymanopt: A Python Toolbox for Optimization on Manifolds using Automatic Differentiation
James Townsend
Niklas Koep
S. Weichwald
22
244
0
10 Mar 2016
Automatic Differentiation Variational Inference
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
27
708
0
02 Mar 2016
Differentiation of the Cholesky decomposition
Differentiation of the Cholesky decomposition
Iain Murray
16
36
0
24 Feb 2016
A Primer on Neural Network Models for Natural Language Processing
A Primer on Neural Network Models for Natural Language Processing
Yoav Goldberg
AI4CE
50
1,128
0
02 Oct 2015
Previous
1234567