Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.05767
Cited By
Automatic differentiation in machine learning: a survey
20 February 2015
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Automatic differentiation in machine learning: a survey"
50 / 319 papers shown
Title
Unnormalized Variational Bayes
Saeed Saremi
BDL
81
1
0
29 Jul 2020
Incremental Without Replacement Sampling in Nonconvex Optimization
Edouard Pauwels
38
5
0
15 Jul 2020
On the Iteration Complexity of Hypergradient Computation
Riccardo Grazzi
Luca Franceschi
Massimiliano Pontil
Saverio Salzo
48
192
0
29 Jun 2020
Relative gradient optimization of the Jacobian term in unsupervised deep learning
Luigi Gresele
G. Fissore
Adrián Javaloy
Bernhard Schölkopf
Aapo Hyvarinen
DRL
19
22
0
26 Jun 2020
Approximate Cross-Validation for Structured Models
S. Ghosh
William T. Stephenson
Tin D. Nguyen
Sameer K. Deshpande
Tamara Broderick
8
15
0
23 Jun 2020
Neural Ordinary Differential Equation Control of Dynamics on Graphs
Thomas Asikis
Lucas Böttcher
Nino Antulov-Fantulin
33
43
0
17 Jun 2020
Dynamic Tensor Rematerialization
Marisa Kirisame
Steven Lyubomirsky
Altan Haan
Jennifer Brennan
Mike He
Jared Roesch
Tianqi Chen
Zachary Tatlock
18
93
0
17 Jun 2020
On Correctness of Automatic Differentiation for Non-Differentiable Functions
Wonyeol Lee
Hangyeol Yu
Xavier Rival
Hongseok Yang
17
40
0
12 Jun 2020
A Primer on Zeroth-Order Optimization in Signal Processing and Machine Learning
Sijia Liu
Pin-Yu Chen
B. Kailkhura
Gaoyuan Zhang
A. Hero III
P. Varshney
21
224
0
11 Jun 2020
Physics informed deep learning for computational elastodynamics without labeled data
Chengping Rao
Hao Sun
Yang Liu
PINN
AI4CE
17
222
0
10 Jun 2020
Predictive Coding Approximates Backprop along Arbitrary Computation Graphs
Beren Millidge
Alexander Tschantz
Christopher L. Buckley
30
118
0
07 Jun 2020
Deep learning of free boundary and Stefan problems
Sizhuang He
P. Perdikaris
24
80
0
04 Jun 2020
Transfer learning based multi-fidelity physics informed deep neural network
S. Chakraborty
PINN
OOD
AI4CE
12
163
0
19 May 2020
DiscretizationNet: A Machine-Learning based solver for Navier-Stokes Equations using Finite Volume Discretization
Rishikesh Ranade
C. Hill
Jay Pathak
AI4CE
54
123
0
17 May 2020
SciANN: A Keras/Tensorflow wrapper for scientific computations and physics-informed deep learning using artificial neural networks
E. Haghighat
R. Juanes
AI4CE
PINN
12
21
0
11 May 2020
Automatic Differentiation in ROOT
V. Vassilev
A. Efremov
O. Shadura
PINN
9
5
0
09 Apr 2020
A deep learning framework for solution and discovery in solid mechanics
E. Haghighat
M. Raissi
A. Moure
H. Gómez
R. Juanes
AI4CE
PINN
8
56
0
14 Feb 2020
Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian Process: A New Insight into Machine Learning Applications
Yun Yuan
X. Yang
Zhao Zhang
Shandian Zhe
AI4CE
34
95
0
06 Feb 2020
Understanding and mitigating gradient pathologies in physics-informed neural networks
Sizhuang He
Yujun Teng
P. Perdikaris
AI4CE
PINN
23
291
0
13 Jan 2020
Trend to Equilibrium for the Kinetic Fokker-Planck Equation via the Neural Network Approach
H. Hwang
Jin Woo Jang
Hyeontae Jo
Jae Yong Lee
149
36
0
22 Nov 2019
A Simple Differentiable Programming Language
M. Abadi
G. Plotkin
14
65
0
11 Nov 2019
Physics-Informed Neural Networks for Power Systems
George S. Misyris
Andreas Venzke
Spyros Chatzivasileiadis
PINN
AI4CE
14
212
0
09 Nov 2019
Deep Learning of Subsurface Flow via Theory-guided Neural Network
Nanzhe Wang
Dongxiao Zhang
Haibin Chang
Heng Li
AI4CE
25
226
0
24 Oct 2019
Machine learning and serving of discrete field theories -- when artificial intelligence meets the discrete universe
H. Qin
29
30
0
22 Oct 2019
Uncertainty-aware Sensitivity Analysis Using Rényi Divergences
Topi Paananen
Michael Riis Andersen
Aki Vehtari
14
3
0
17 Oct 2019
Backpropagation in the Simply Typed Lambda-calculus with Linear Negation
Aloïs Brunel
Damiano Mazza
Michele Pagani
14
46
0
27 Sep 2019
Locally adaptive activation functions with slope recovery term for deep and physics-informed neural networks
Ameya Dilip Jagtap
Kenji Kawaguchi
George Karniadakis
ODL
13
85
0
25 Sep 2019
Machine Discovery of Partial Differential Equations from Spatiotemporal Data
Ye Yuan
Junlin Li
Liang Li
Frank Jiang
Xiuchuan Tang
...
J. Gonçalves
H. Voss
Xiuting Li
J. Kurths
Han Ding
AI4CE
9
9
0
15 Sep 2019
Independent Subspace Analysis for Unsupervised Learning of Disentangled Representations
Jan Stühmer
Richard Turner
Sebastian Nowozin
DRL
BDL
CoGe
114
25
0
05 Sep 2019
DL-PDE: Deep-learning based data-driven discovery of partial differential equations from discrete and noisy data
Hao Xu
Haibin Chang
Dongxiao Zhang
AI4CE
12
69
0
13 Aug 2019
Distributed physics informed neural network for data-efficient solution to partial differential equations
Vikas Dwivedi
N. Parashar
Balaji Srinivasan
PINN
8
81
0
21 Jul 2019
DeepXDE: A deep learning library for solving differential equations
Lu Lu
Xuhui Meng
Zhiping Mao
George Karniadakis
PINN
AI4CE
22
1,485
0
10 Jul 2019
Physics Informed Extreme Learning Machine (PIELM) -- A rapid method for the numerical solution of partial differential equations
Vikas Dwivedi
Balaji Srinivasan
PINN
11
190
0
08 Jul 2019
Monte Carlo Gradient Estimation in Machine Learning
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
43
397
0
25 Jun 2019
Declarative Learning-Based Programming as an Interface to AI Systems
Parisa Kordjamshidi
Dan Roth
Kristian Kersting
17
4
0
18 Jun 2019
Parameterized quantum circuits as machine learning models
Marcello Benedetti
Erika Lloyd
Stefan H. Sack
Mattia Fiorentini
27
869
0
18 Jun 2019
A general method for regularizing tensor decomposition methods via pseudo-data
Omer Gottesman
Weiwei Pan
Finale Doshi-Velez
11
0
0
24 May 2019
Deep Neural Networks for Marine Debris Detection in Sonar Images
Matias Valdenegro-Toro
27
25
0
13 May 2019
Effective Estimation of Deep Generative Language Models
Tom Pelsmaeker
Wilker Aziz
BDL
22
27
0
17 Apr 2019
Least Squares Auto-Tuning
Shane T. Barratt
Stephen P. Boyd
MoMe
19
23
0
10 Apr 2019
Feature Engineering for Mid-Price Prediction with Deep Learning
Adamantios Ntakaris
G. Mirone
Juho Kanniainen
Moncef Gabbouj
Alexandros Iosifidis
OOD
25
44
0
10 Apr 2019
On the Equivalence of Automatic and Symbolic Differentiation
Soeren Laue
12
4
0
05 Apr 2019
LF-PPL: A Low-Level First Order Probabilistic Programming Language for Non-Differentiable Models
Yuanshuo Zhou
Bradley Gram-Hansen
Tobias Kohn
Tom Rainforth
Hongseok Yang
Frank D. Wood
31
24
0
06 Mar 2019
Neural Empirical Bayes
Saeed Saremi
Aapo Hyvarinen
12
65
0
06 Mar 2019
Action Robust Reinforcement Learning and Applications in Continuous Control
Chen Tessler
Yonathan Efroni
Shie Mannor
30
230
0
26 Jan 2019
Autoencoder Based Residual Deep Networks for Robust Regression Prediction and Spatiotemporal Estimation
Lianfa Li
Ying Fang
Jun Wu
Jinfeng Wang
22
13
0
29 Dec 2018
Physics-informed deep generative models
Yibo Yang
P. Perdikaris
AI4CE
PINN
19
57
0
09 Dec 2018
A Spectral Regularizer for Unsupervised Disentanglement
Aditya A. Ramesh
Youngduck Choi
Yann LeCun
DRL
19
42
0
04 Dec 2018
Truncated Back-propagation for Bilevel Optimization
Amirreza Shaban
Ching-An Cheng
Nathan Hatch
Byron Boots
24
261
0
25 Oct 2018
Physics-Driven Regularization of Deep Neural Networks for Enhanced Engineering Design and Analysis
M. A. Nabian
Hadi Meidani
PINN
AI4CE
21
57
0
11 Oct 2018
Previous
1
2
3
4
5
6
7
Next