Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1503.06394
Cited By
Large-scale Log-determinant Computation through Stochastic Chebyshev Expansions
22 March 2015
Insu Han
Dmitry Malioutov
Jinwoo Shin
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Large-scale Log-determinant Computation through Stochastic Chebyshev Expansions"
36 / 36 papers shown
Title
Analyzing Generative Models by Manifold Entropic Metrics
Daniel Galperin
Ullrich Köthe
DRL
148
0
0
25 Oct 2024
Stochastic diagonal estimation with adaptive parameter selection
Zongyuan Han
Wenhao Li
Shengxin Zhu
52
0
0
15 Oct 2024
Batch Active Learning in Gaussian Process Regression using Derivatives
Hon Sum Alec Yu
Christoph Zimmer
D. Nguyen-Tuong
GP
67
1
0
03 Aug 2024
On gauge freedom, conservativity and intrinsic dimensionality estimation in diffusion models
Christian Horvat
J. Pfister
DiffM
92
13
0
06 Feb 2024
The Exact Determinant of a Specific Class of Sparse Positive Definite Matrices
Mehdi Molkaraie
15
0
0
11 Nov 2023
A Review of Change of Variable Formulas for Generative Modeling
Ullrich Kothe
72
8
0
04 Aug 2023
Linear-scaling kernels for protein sequences and small molecules outperform deep learning while providing uncertainty quantitation and improved interpretability
J. Parkinson
Wen Wang
BDL
59
8
0
07 Feb 2023
Geostatistics for large datasets on Riemannian manifolds: a matrix-free approach
M. Pereira
N. Desassis
D. Allard
34
10
0
26 Aug 2022
Accurate Node Feature Estimation with Structured Variational Graph Autoencoder
Jaemin Yoo
Hyunsik Jeon
Jinhong Jung
U. Kang
BDL
50
21
0
09 Jun 2022
Fast Projected Newton-like Method for Precision Matrix Estimation under Total Positivity
Jian-Feng Cai
José Vinícius de Miranda Cardoso
Daniel P. Palomar
Jiaxi Ying
98
11
0
03 Dec 2021
Rectangular Flows for Manifold Learning
Anthony L. Caterini
Gabriel Loaiza-Ganem
Geoff Pleiss
John P. Cunningham
DRL
105
47
0
02 Jun 2021
Large-Scale Wasserstein Gradient Flows
Petr Mokrov
Alexander Korotin
Lingxiao Li
Aude Genevay
Justin Solomon
Evgeny Burnaev
90
76
0
01 Jun 2021
Geometric variational inference
Philipp Frank
R. Leike
T. Ensslin
76
24
0
21 May 2021
Practical and Rigorous Uncertainty Bounds for Gaussian Process Regression
Christian Fiedler
C. Scherer
Sebastian Trimpe
GP
77
71
0
06 May 2021
Quantum algorithms for spectral sums
Alessandro Luongo
Changpeng Shao
53
5
0
12 Nov 2020
Hutch++: Optimal Stochastic Trace Estimation
R. A. Meyer
Cameron Musco
Christopher Musco
David P. Woodruff
98
106
0
19 Oct 2020
On the Role of Sparsity and DAG Constraints for Learning Linear DAGs
Ignavier Ng
AmirEmad Ghassami
Kun Zhang
CML
89
189
0
17 Jun 2020
Two equalities expressing the determinant of a matrix in terms of expectations over matrix-vector products
Jascha Narain Sohl-Dickstein
11
5
0
13 May 2020
MEMe: An Accurate Maximum Entropy Method for Efficient Approximations in Large-Scale Machine Learning
Diego Granziol
Binxin Ru
S. Zohren
Xiaowen Dong
Michael A. Osborne
Stephen J. Roberts
55
20
0
03 Jun 2019
Exponential Family Estimation via Adversarial Dynamics Embedding
Bo Dai
Ziqiang Liu
H. Dai
Niao He
Arthur Gretton
Le Song
Dale Schuurmans
82
53
0
27 Apr 2019
Scaling Gaussian Process Regression with Derivatives
David Eriksson
Kun Dong
E. Lee
D. Bindel
A. Wilson
GP
63
76
0
29 Oct 2018
Entropic Spectral Learning for Large-Scale Graphs
Diego Granziol
Binxin Ru
S. Zohren
Xiaowen Dong
Michael A. Osborne
Stephen J. Roberts
14
3
0
18 Apr 2018
VBALD - Variational Bayesian Approximation of Log Determinants
Diego Granziol
E. Wagstaff
Binxin Ru
Michael A. Osborne
Stephen J. Roberts
42
2
0
21 Feb 2018
Stochastic Chebyshev Gradient Descent for Spectral Optimization
Insu Han
H. Avron
Jinwoo Shin
67
11
0
18 Feb 2018
Estimating the Spectral Density of Large Implicit Matrices
Ryan P. Adams
Jeffrey Pennington
Matthew J. Johnson
Jamie Smith
Yaniv Ovadia
Brian Patton
J. Saunderson
90
34
0
09 Feb 2018
Scalable Log Determinants for Gaussian Process Kernel Learning
Kun Dong
David Eriksson
H. Nickisch
D. Bindel
A. Wilson
69
95
0
09 Nov 2017
A determinant-free method to simulate the parameters of large Gaussian fields
L. Ellam
Heiko Strathmann
Mark Girolami
Iain Murray
96
3
0
11 Sep 2017
A Nonparametric Model for Multimodal Collaborative Activities Summarization
Guy Rosman
John W. Fisher III
Daniela Rus
EgoV
22
0
0
04 Sep 2017
Large Linear Multi-output Gaussian Process Learning
Vladimir Feinberg
Li-Fang Cheng
Kai Li
Barbara E. Engelhardt
GP
42
6
0
30 May 2017
Entropic Trace Estimates for Log Determinants
Jack K. Fitzsimons
Diego Granziol
Kurt Cutajar
Michael A. Osborne
Maurizio Filippone
Stephen J. Roberts
51
26
0
24 Apr 2017
Bayesian Inference of Log Determinants
Jack K. Fitzsimons
Kurt Cutajar
Michael A. Osborne
Stephen J. Roberts
Maurizio Filippone
87
18
0
05 Apr 2017
Spectrum Estimation from a Few Entries
A. Khetan
Sewoong Oh
47
8
0
18 Mar 2017
Faster Greedy MAP Inference for Determinantal Point Processes
Insu Han
P. Kambadur
KyoungSoo Park
Jinwoo Shin
71
25
0
09 Mar 2017
Nonparanormal Information Estimation
Shashank Singh
Barnabás Póczós
134
20
0
24 Feb 2017
Scalable Gaussian Processes for Characterizing Multidimensional Change Surfaces
William Herlands
A. Wilson
H. Nickisch
Seth Flaxman
Daniel B. Neill
Wilbert Van Panhuis
Eric Xing
36
32
0
13 Nov 2015
Teaching and compressing for low VC-dimension
Shay Moran
Amir Shpilka
Avi Wigderson
Amir Yehudayoff
86
12
0
22 Feb 2015
1