ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1503.06394
  4. Cited By
Large-scale Log-determinant Computation through Stochastic Chebyshev
  Expansions

Large-scale Log-determinant Computation through Stochastic Chebyshev Expansions

22 March 2015
Insu Han
Dmitry Malioutov
Jinwoo Shin
ArXiv (abs)PDFHTML

Papers citing "Large-scale Log-determinant Computation through Stochastic Chebyshev Expansions"

36 / 36 papers shown
Title
Analyzing Generative Models by Manifold Entropic Metrics
Analyzing Generative Models by Manifold Entropic Metrics
Daniel Galperin
Ullrich Köthe
DRL
148
0
0
25 Oct 2024
Stochastic diagonal estimation with adaptive parameter selection
Stochastic diagonal estimation with adaptive parameter selection
Zongyuan Han
Wenhao Li
Shengxin Zhu
52
0
0
15 Oct 2024
Batch Active Learning in Gaussian Process Regression using Derivatives
Batch Active Learning in Gaussian Process Regression using Derivatives
Hon Sum Alec Yu
Christoph Zimmer
D. Nguyen-Tuong
GP
67
1
0
03 Aug 2024
On gauge freedom, conservativity and intrinsic dimensionality estimation
  in diffusion models
On gauge freedom, conservativity and intrinsic dimensionality estimation in diffusion models
Christian Horvat
J. Pfister
DiffM
92
13
0
06 Feb 2024
The Exact Determinant of a Specific Class of Sparse Positive Definite
  Matrices
The Exact Determinant of a Specific Class of Sparse Positive Definite Matrices
Mehdi Molkaraie
17
0
0
11 Nov 2023
A Review of Change of Variable Formulas for Generative Modeling
A Review of Change of Variable Formulas for Generative Modeling
Ullrich Kothe
72
8
0
04 Aug 2023
Linear-scaling kernels for protein sequences and small molecules
  outperform deep learning while providing uncertainty quantitation and
  improved interpretability
Linear-scaling kernels for protein sequences and small molecules outperform deep learning while providing uncertainty quantitation and improved interpretability
J. Parkinson
Wen Wang
BDL
59
8
0
07 Feb 2023
Geostatistics for large datasets on Riemannian manifolds: a matrix-free
  approach
Geostatistics for large datasets on Riemannian manifolds: a matrix-free approach
M. Pereira
N. Desassis
D. Allard
34
10
0
26 Aug 2022
Accurate Node Feature Estimation with Structured Variational Graph
  Autoencoder
Accurate Node Feature Estimation with Structured Variational Graph Autoencoder
Jaemin Yoo
Hyunsik Jeon
Jinhong Jung
U. Kang
BDL
50
21
0
09 Jun 2022
Fast Projected Newton-like Method for Precision Matrix Estimation under
  Total Positivity
Fast Projected Newton-like Method for Precision Matrix Estimation under Total Positivity
Jian-Feng Cai
José Vinícius de Miranda Cardoso
Daniel P. Palomar
Jiaxi Ying
98
11
0
03 Dec 2021
Rectangular Flows for Manifold Learning
Rectangular Flows for Manifold Learning
Anthony L. Caterini
Gabriel Loaiza-Ganem
Geoff Pleiss
John P. Cunningham
DRL
105
47
0
02 Jun 2021
Large-Scale Wasserstein Gradient Flows
Large-Scale Wasserstein Gradient Flows
Petr Mokrov
Alexander Korotin
Lingxiao Li
Aude Genevay
Justin Solomon
Evgeny Burnaev
90
76
0
01 Jun 2021
Geometric variational inference
Geometric variational inference
Philipp Frank
R. Leike
T. Ensslin
76
24
0
21 May 2021
Practical and Rigorous Uncertainty Bounds for Gaussian Process
  Regression
Practical and Rigorous Uncertainty Bounds for Gaussian Process Regression
Christian Fiedler
C. Scherer
Sebastian Trimpe
GP
77
71
0
06 May 2021
Quantum algorithms for spectral sums
Quantum algorithms for spectral sums
Alessandro Luongo
Changpeng Shao
53
5
0
12 Nov 2020
Hutch++: Optimal Stochastic Trace Estimation
Hutch++: Optimal Stochastic Trace Estimation
R. A. Meyer
Cameron Musco
Christopher Musco
David P. Woodruff
98
106
0
19 Oct 2020
On the Role of Sparsity and DAG Constraints for Learning Linear DAGs
On the Role of Sparsity and DAG Constraints for Learning Linear DAGs
Ignavier Ng
AmirEmad Ghassami
Kun Zhang
CML
89
189
0
17 Jun 2020
Two equalities expressing the determinant of a matrix in terms of
  expectations over matrix-vector products
Two equalities expressing the determinant of a matrix in terms of expectations over matrix-vector products
Jascha Narain Sohl-Dickstein
13
5
0
13 May 2020
MEMe: An Accurate Maximum Entropy Method for Efficient Approximations in
  Large-Scale Machine Learning
MEMe: An Accurate Maximum Entropy Method for Efficient Approximations in Large-Scale Machine Learning
Diego Granziol
Binxin Ru
S. Zohren
Xiaowen Dong
Michael A. Osborne
Stephen J. Roberts
55
20
0
03 Jun 2019
Exponential Family Estimation via Adversarial Dynamics Embedding
Exponential Family Estimation via Adversarial Dynamics Embedding
Bo Dai
Ziqiang Liu
H. Dai
Niao He
Arthur Gretton
Le Song
Dale Schuurmans
82
53
0
27 Apr 2019
Scaling Gaussian Process Regression with Derivatives
Scaling Gaussian Process Regression with Derivatives
David Eriksson
Kun Dong
E. Lee
D. Bindel
A. Wilson
GP
63
76
0
29 Oct 2018
Entropic Spectral Learning for Large-Scale Graphs
Entropic Spectral Learning for Large-Scale Graphs
Diego Granziol
Binxin Ru
S. Zohren
Xiaowen Dong
Michael A. Osborne
Stephen J. Roberts
16
3
0
18 Apr 2018
VBALD - Variational Bayesian Approximation of Log Determinants
VBALD - Variational Bayesian Approximation of Log Determinants
Diego Granziol
E. Wagstaff
Binxin Ru
Michael A. Osborne
Stephen J. Roberts
42
2
0
21 Feb 2018
Stochastic Chebyshev Gradient Descent for Spectral Optimization
Stochastic Chebyshev Gradient Descent for Spectral Optimization
Insu Han
H. Avron
Jinwoo Shin
67
11
0
18 Feb 2018
Estimating the Spectral Density of Large Implicit Matrices
Estimating the Spectral Density of Large Implicit Matrices
Ryan P. Adams
Jeffrey Pennington
Matthew J. Johnson
Jamie Smith
Yaniv Ovadia
Brian Patton
J. Saunderson
90
34
0
09 Feb 2018
Scalable Log Determinants for Gaussian Process Kernel Learning
Scalable Log Determinants for Gaussian Process Kernel Learning
Kun Dong
David Eriksson
H. Nickisch
D. Bindel
A. Wilson
69
95
0
09 Nov 2017
A determinant-free method to simulate the parameters of large Gaussian
  fields
A determinant-free method to simulate the parameters of large Gaussian fields
L. Ellam
Heiko Strathmann
Mark Girolami
Iain Murray
96
3
0
11 Sep 2017
A Nonparametric Model for Multimodal Collaborative Activities
  Summarization
A Nonparametric Model for Multimodal Collaborative Activities Summarization
Guy Rosman
John W. Fisher III
Daniela Rus
EgoV
24
0
0
04 Sep 2017
Large Linear Multi-output Gaussian Process Learning
Large Linear Multi-output Gaussian Process Learning
Vladimir Feinberg
Li-Fang Cheng
Kai Li
Barbara E. Engelhardt
GP
44
6
0
30 May 2017
Entropic Trace Estimates for Log Determinants
Entropic Trace Estimates for Log Determinants
Jack K. Fitzsimons
Diego Granziol
Kurt Cutajar
Michael A. Osborne
Maurizio Filippone
Stephen J. Roberts
53
26
0
24 Apr 2017
Bayesian Inference of Log Determinants
Bayesian Inference of Log Determinants
Jack K. Fitzsimons
Kurt Cutajar
Michael A. Osborne
Stephen J. Roberts
Maurizio Filippone
89
18
0
05 Apr 2017
Spectrum Estimation from a Few Entries
Spectrum Estimation from a Few Entries
A. Khetan
Sewoong Oh
47
8
0
18 Mar 2017
Faster Greedy MAP Inference for Determinantal Point Processes
Faster Greedy MAP Inference for Determinantal Point Processes
Insu Han
P. Kambadur
KyoungSoo Park
Jinwoo Shin
73
25
0
09 Mar 2017
Nonparanormal Information Estimation
Nonparanormal Information Estimation
Shashank Singh
Barnabás Póczós
134
20
0
24 Feb 2017
Scalable Gaussian Processes for Characterizing Multidimensional Change
  Surfaces
Scalable Gaussian Processes for Characterizing Multidimensional Change Surfaces
William Herlands
A. Wilson
H. Nickisch
Seth Flaxman
Daniel B. Neill
Wilbert Van Panhuis
Eric Xing
36
32
0
13 Nov 2015
Teaching and compressing for low VC-dimension
Teaching and compressing for low VC-dimension
Shay Moran
Amir Shpilka
Avi Wigderson
Amir Yehudayoff
86
12
0
22 Feb 2015
1