Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1505.02250
Cited By
Newton Sketch: A Linear-time Optimization Algorithm with Linear-Quadratic Convergence
9 May 2015
Mert Pilanci
Martin J. Wainwright
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Newton Sketch: A Linear-time Optimization Algorithm with Linear-Quadratic Convergence"
34 / 34 papers shown
Title
SAPPHIRE: Preconditioned Stochastic Variance Reduction for Faster Large-Scale Statistical Learning
Jingruo Sun
Zachary Frangella
Madeleine Udell
31
0
0
28 Jan 2025
Stochastic Online Optimization for Cyber-Physical and Robotic Systems
Hao Ma
M. Zeilinger
Michael Muehlebach
29
0
0
08 Apr 2024
Surrogate-based Autotuning for Randomized Sketching Algorithms in Regression Problems
Younghyun Cho
James Demmel
Michal Derezinski
Haoyun Li
Hengrui Luo
Michael W. Mahoney
Riley Murray
27
5
0
30 Aug 2023
Memory-Query Tradeoffs for Randomized Convex Optimization
X. Chen
Binghui Peng
34
6
0
21 Jun 2023
ISAAC Newton: Input-based Approximate Curvature for Newton's Method
Felix Petersen
Tobias Sutter
Christian Borgelt
Dongsung Huh
Hilde Kuehne
Yuekai Sun
Oliver Deussen
ODL
23
5
0
01 May 2023
A Randomised Subspace Gauss-Newton Method for Nonlinear Least-Squares
C. Cartis
J. Fowkes
Zhen Shao
14
11
0
10 Nov 2022
Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee
Tianyi Lin
P. Mertikopoulos
Michael I. Jordan
24
11
0
23 Oct 2022
Stochastic Variance-Reduced Newton: Accelerating Finite-Sum Minimization with Large Batches
Michal Derezinski
42
5
0
06 Jun 2022
Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming
Sen Na
Michael W. Mahoney
18
7
0
27 May 2022
Augmented Newton Method for Optimization: Global Linear Rate and Momentum Interpretation
M. Morshed
ODL
9
1
0
23 May 2022
Efficient Convex Optimization Requires Superlinear Memory
A. Marsden
Vatsal Sharan
Aaron Sidford
Gregory Valiant
24
14
0
29 Mar 2022
Operator Sketching for Deep Unrolling Networks
Junqi Tang
Subhadip Mukherjee
Carola-Bibiane Schönlieb
16
0
0
21 Mar 2022
Accelerating Plug-and-Play Image Reconstruction via Multi-Stage Sketched Gradients
Junqi Tang
16
2
0
14 Mar 2022
Training Multi-Layer Over-Parametrized Neural Network in Subquadratic Time
Zhao-quan Song
Licheng Zhang
Ruizhe Zhang
23
63
0
14 Dec 2021
Nys-Newton: Nyström-Approximated Curvature for Stochastic Optimization
Dinesh Singh
Hardik Tankaria
M. Yamada
ODL
26
2
0
16 Oct 2021
NG+ : A Multi-Step Matrix-Product Natural Gradient Method for Deep Learning
Minghan Yang
Dong Xu
Qiwen Cui
Zaiwen Wen
Pengxiang Xu
11
4
0
14 Jun 2021
Sparse sketches with small inversion bias
Michal Derezinski
Zhenyu Liao
Edgar Dobriban
Michael W. Mahoney
15
21
0
21 Nov 2020
Recursive Importance Sketching for Rank Constrained Least Squares: Algorithms and High-order Convergence
Yuetian Luo
Wen Huang
Xudong Li
Anru R. Zhang
19
15
0
17 Nov 2020
Fast and Secure Distributed Nonnegative Matrix Factorization
Yuqiu Qian
Conghui Tan
Danhao Ding
Hui Li
N. Mamoulis
15
13
0
07 Sep 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
19
0
0
26 Aug 2020
Effective Dimension Adaptive Sketching Methods for Faster Regularized Least-Squares Optimization
Jonathan Lacotte
Mert Pilanci
21
23
0
10 Jun 2020
FedSplit: An algorithmic framework for fast federated optimization
Reese Pathak
Martin J. Wainwright
FedML
32
182
0
11 May 2020
How to reduce dimension with PCA and random projections?
Fan Yang
Sifan Liu
Edgar Dobriban
David P. Woodruff
17
28
0
01 May 2020
Scalable Second Order Optimization for Deep Learning
Rohan Anil
Vineet Gupta
Tomer Koren
Kevin Regan
Y. Singer
ODL
6
29
0
20 Feb 2020
Convergence Analysis of Block Coordinate Algorithms with Determinantal Sampling
Mojmír Mutný
Michal Derezinski
Andreas Krause
17
20
0
25 Oct 2019
OverSketch: Approximate Matrix Multiplication for the Cloud
Vipul Gupta
Ryan Sherman
Thomas Courtade
Kannan Ramchandran
9
49
0
06 Nov 2018
Bandit-Based Monte Carlo Optimization for Nearest Neighbors
Vivek Bagaria
Tavor Z. Baharav
G. Kamath
David Tse
11
12
0
21 May 2018
Generalized Self-Concordant Functions: A Recipe for Newton-Type Methods
Tianxiao Sun
Quoc Tran-Dinh
8
60
0
14 Mar 2017
Sketching Meets Random Projection in the Dual: A Provable Recovery Algorithm for Big and High-dimensional Data
Jialei Wang
J. Lee
M. Mahdavi
Mladen Kolar
Nathan Srebro
13
50
0
10 Oct 2016
Exact and Inexact Subsampled Newton Methods for Optimization
Raghu Bollapragada
R. Byrd
J. Nocedal
15
176
0
27 Sep 2016
Tradeoffs between Convergence Speed and Reconstruction Accuracy in Inverse Problems
Raja Giryes
Yonina C. Eldar
A. Bronstein
Guillermo Sapiro
12
85
0
30 May 2016
SUIS: An Online Graphical Signature-Based User Identification System
Séamus Lankford
14
2
0
29 May 2016
Sub-Sampled Newton Methods II: Local Convergence Rates
Farbod Roosta-Khorasani
Michael W. Mahoney
14
83
0
18 Jan 2016
DUAL-LOCO: Distributing Statistical Estimation Using Random Projections
C. Heinze
Brian McWilliams
N. Meinshausen
24
37
0
08 Jun 2015
1