Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1505.02250
Cited By
Newton Sketch: A Linear-time Optimization Algorithm with Linear-Quadratic Convergence
9 May 2015
Mert Pilanci
Martin J. Wainwright
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Newton Sketch: A Linear-time Optimization Algorithm with Linear-Quadratic Convergence"
50 / 131 papers shown
Title
Non-Asymptotic Optimization and Generalization Bounds for Stochastic Gauss-Newton in Overparameterized Models
Semih Cayci
88
0
0
06 Nov 2025
Sequential Least-Squares Estimators with Fast Randomized Sketching for Linear Statistical Models
Guan-Yu Chen
Xi Yang
40
0
0
08 Sep 2025
Simple Stepsize for Quasi-Newton Methods with Global Convergence Guarantees
A. Agafonov
Vladislav Ryspayev
Samuel Horváth
Alexander V. Gasnikov
Martin Takáč
Slavomír Hanzely
60
1
0
27 Aug 2025
SAPPHIRE: Preconditioned Stochastic Variance Reduction for Faster Large-Scale Statistical Learning
Jingruo Sun
Zachary Frangella
Madeleine Udell
178
2
0
28 Jan 2025
CRONOS: Enhancing Deep Learning with Scalable GPU Accelerated Convex Neural Networks
Neural Information Processing Systems (NeurIPS), 2024
Miria Feng
Zachary Frangella
Mert Pilanci
BDL
364
2
0
02 Nov 2024
Newton Meets Marchenko-Pastur: Massively Parallel Second-Order Optimization with Hessian Sketching and Debiasing
International Conference on Learning Representations (ICLR), 2024
Elad Romanov
Fangzhao Zhang
Mert Pilanci
134
1
0
02 Oct 2024
FLeNS: Federated Learning with Enhanced Nesterov-Newton Sketch
BigData Congress [Services Society] (BSS), 2024
Sunny Gupta
Mohit Jindal
Pankhi Kashyap
Pranav Jeevan
Amit Sethi
FedML
202
0
0
23 Sep 2024
Incremental Gauss--Newton Methods with Superlinear Convergence Rates
Zhiling Zhou
Zhuanghua Liu
Chengchang Liu
Luo Luo
151
1
0
03 Jul 2024
Recent and Upcoming Developments in Randomized Numerical Linear Algebra for Machine Learning
Michał Dereziński
Michael W. Mahoney
232
18
0
17 Jun 2024
Stochastic Newton Proximal Extragradient Method
Ruichen Jiang
Michal Dereziñski
Aryan Mokhtari
92
0
0
03 Jun 2024
Second-order Information Promotes Mini-Batch Robustness in Variance-Reduced Gradients
Sachin Garg
A. Berahas
Michal Dereziñski
181
2
0
23 Apr 2024
Gradient Descent is Pareto-Optimal in the Oracle Complexity and Memory Tradeoff for Feasibility Problems
IEEE Annual Symposium on Foundations of Computer Science (FOCS), 2024
Moise Blanchard
212
1
0
10 Apr 2024
Stochastic Online Optimization for Cyber-Physical and Robotic Systems
Hao Ma
Melanie Zeilinger
Michael Muehlebach
182
3
0
08 Apr 2024
Online estimation of the inverse of the Hessian for stochastic optimization with application to universal stochastic Newton algorithms
Antoine Godichon-Baggioni
Wei Lu
Bruno Portier
476
3
0
15 Jan 2024
FedNS: A Fast Sketching Newton-Type Algorithm for Federated Learning
Jian Li
Yong Liu
Wei Wang
Haoran Wu
Weiping Wang
FedML
229
5
0
05 Jan 2024
Covering Number of Real Algebraic Varieties and Beyond: Improved Bounds and Applications
Yifan Zhang
Joe Kileel
351
6
0
09 Nov 2023
CORE: Common Random Reconstruction for Distributed Optimization with Provable Low Communication Complexity
Pengyun Yue
Hanzheng Zhao
Cong Fang
Di He
Liwei Wang
Zhouchen Lin
Song-Chun Zhu
176
1
0
23 Sep 2023
A Distributed Data-Parallel PyTorch Implementation of the Distributed Shampoo Optimizer for Training Neural Networks At-Scale
Hao-Jun Michael Shi
Tsung-Hsien Lee
Shintaro Iwasaki
Jose Gallego-Posada
Zhijing Li
Kaushik Rangadurai
Dheevatsa Mudigere
Michael Rabbat
ODL
200
43
0
12 Sep 2023
Surrogate-based Autotuning for Randomized Sketching Algorithms in Regression Problems
Younghyun Cho
James Demmel
Michal Derezinski
Haoyun Li
Hengrui Luo
Michael W. Mahoney
Riley Murray
195
7
0
30 Aug 2023
Gradient Coding with Iterative Block Leverage Score Sampling
IEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2023
Neophytos Charalambides
Mert Pilanci
Alfred Hero
257
4
0
06 Aug 2023
Limited-Memory Greedy Quasi-Newton Method with Non-asymptotic Superlinear Convergence Rate
Zhan Gao
Aryan Mokhtari
Alec Koppel
114
2
0
27 Jun 2023
Memory-Query Tradeoffs for Randomized Convex Optimization
IEEE Annual Symposium on Foundations of Computer Science (FOCS), 2023
Xinyu Chen
Binghui Peng
180
7
0
21 Jun 2023
Constrained Optimization via Exact Augmented Lagrangian and Randomized Iterative Sketching
International Conference on Machine Learning (ICML), 2023
Ilgee Hong
Sen Na
Michael W. Mahoney
Mladen Kolar
148
6
0
28 May 2023
Sharpened Lazy Incremental Quasi-Newton Method
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Aakash Lahoti
Spandan Senapati
K. Rajawat
Alec Koppel
311
2
0
26 May 2023
ISAAC Newton: Input-based Approximate Curvature for Newton's Method
International Conference on Learning Representations (ICLR), 2023
Felix Petersen
Tobias Sutter
Christian Borgelt
Dongsung Huh
Hilde Kuehne
Yuekai Sun
Oliver Deussen
ODL
187
5
0
01 May 2023
Robust, randomized preconditioning for kernel ridge regression
Mateo Díaz
Ethan N. Epperly
Zachary Frangella
J. Tropp
R. Webber
463
16
0
24 Apr 2023
SketchySGD: Reliable Stochastic Optimization via Randomized Curvature Estimates
SIAM Journal on Mathematics of Data Science (SIMODS), 2022
Zachary Frangella
Pratik Rathore
Shipu Zhao
Madeleine Udell
310
8
0
16 Nov 2022
A Randomised Subspace Gauss-Newton Method for Nonlinear Least-Squares
C. Cartis
J. Fowkes
Zhen Shao
60
17
0
10 Nov 2022
Explicit Second-Order Min-Max Optimization: Practical Algorithms and Complexity Analysis
Tianyi Lin
P. Mertikopoulos
Michael I. Jordan
424
14
0
23 Oct 2022
DRSOM: A Dimension Reduced Second-Order Method
Chuwen Zhang
Dongdong Ge
Chang He
Bo Jiang
Yuntian Jiang
Yi-Li Ye
126
7
0
30 Jul 2022
SP2: A Second Order Stochastic Polyak Method
International Conference on Learning Representations (ICLR), 2022
Shuang Li
W. Swartworth
Martin Takávc
Deanna Needell
Robert Mansel Gower
149
14
0
17 Jul 2022
Riemannian Natural Gradient Methods
Jiang Hu
Ruicheng Ao
Anthony Man-Cho So
Minghan Yang
Zaiwen Wen
133
13
0
15 Jul 2022
Stochastic Variance-Reduced Newton: Accelerating Finite-Sum Minimization with Large Batches
Michal Derezinski
295
11
0
06 Jun 2022
Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming
Sen Na
Michael W. Mahoney
329
10
0
27 May 2022
Augmented Newton Method for Optimization: Global Linear Rate and Momentum Interpretation
M. Morshed
ODL
139
1
0
23 May 2022
Hessian Averaging in Stochastic Newton Methods Achieves Superlinear Convergence
Mathematical programming (Math. Program.), 2022
Sen Na
Michal Derezinski
Michael W. Mahoney
268
21
0
20 Apr 2022
Optimal Subsampling for High-dimensional Ridge Regression
Knowledge-Based Systems (KBS), 2022
Hanyu Li
Cheng Niu
139
7
0
18 Apr 2022
Efficient Convex Optimization Requires Superlinear Memory
Annual Conference Computational Learning Theory (COLT), 2022
A. Marsden
Willie Neiswanger
Aaron Sidford
Gregory Valiant
172
16
0
29 Mar 2022
Operator Sketching for Deep Unrolling Networks
Junqi Tang
Subhadip Mukherjee
Carola-Bibiane Schönlieb
207
0
0
21 Mar 2022
Distributed Sketching for Randomized Optimization: Exact Characterization, Concentration and Lower Bounds
IEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2022
Burak Bartan
Mert Pilanci
115
6
0
18 Mar 2022
Accelerating Plug-and-Play Image Reconstruction via Multi-Stage Sketched Gradients
Junqi Tang
163
2
0
14 Mar 2022
pylspack: Parallel algorithms and data structures for sketching, column subset selection, regression and leverage scores
ACM Transactions on Mathematical Software (TOMS), 2022
Aleksandros Sobczyk
Efstratios Gallopoulos
169
9
0
05 Mar 2022
Efficient Privacy Preserving Logistic Regression for Horizontally Distributed Data
G. Miao
100
0
0
05 Feb 2022
The Complexity of Dynamic Least-Squares Regression
IEEE Annual Symposium on Foundations of Computer Science (FOCS), 2022
Shunhua Jiang
Binghui Peng
Omri Weinstein
169
6
0
01 Jan 2022
Training Multi-Layer Over-Parametrized Neural Network in Subquadratic Time
Zhao Song
Licheng Zhang
Ruizhe Zhang
308
67
0
14 Dec 2021
Learning Linear Models Using Distributed Iterative Hessian Sketching
Han Wang
James Anderson
195
2
0
08 Dec 2021
Learning Augmentation Distributions using Transformed Risk Minimization
Evangelos Chatzipantazis
Stefanos Pertigkiozoglou
Kostas Daniilidis
Guang Cheng
212
15
0
16 Nov 2021
Nys-Newton: Nyström-Approximated Curvature for Stochastic Optimization
Dinesh Singh
Hardik Tankaria
M. Yamada
ODL
215
3
0
16 Oct 2021
Computational Polarization: An Information-theoretic Method for Resilient Computing
IEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2021
Mert Pilanci
149
3
0
08 Sep 2021
Functional Principal Subspace Sampling for Large Scale Functional Data Analysis
Electronic Journal of Statistics (EJS), 2021
Shiyuan He
Xiaomeng Yan
196
5
0
08 Sep 2021
1
2
3
Next