Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1505.03906
Cited By
Training generative neural networks via Maximum Mean Discrepancy optimization
14 May 2015
Gintare Karolina Dziugaite
Daniel M. Roy
Zoubin Ghahramani
GAN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Training generative neural networks via Maximum Mean Discrepancy optimization"
50 / 125 papers shown
Title
Boosting Statistic Learning with Synthetic Data from Pretrained Large Models
Jialong Jiang
Wenkang Hu
Jian Huang
Yuling Jiao
Xu Liu
DiffM
50
0
0
08 May 2025
ReLU integral probability metric and its applications
Yuha Park
Kunwoong Kim
Insung Kong
Yongdai Kim
50
0
0
26 Apr 2025
A Dictionary of Closed-Form Kernel Mean Embeddings
F. Briol
A. Gessner
Toni Karvonen
Maren Mahsereci
BDL
90
1
0
26 Apr 2025
High-Performance Reinforcement Learning on Spot: Optimizing Simulation Parameters with Distributional Measures
A. J Miller
Fangzhou Yu
Michael Brauckmann
Farbod Farshidian
OffRL
BDL
23
0
0
24 Apr 2025
Proper scoring rules for estimation and forecast evaluation
Kartik Waghmare
Johanna Ziegel
AI4TS
35
0
0
02 Apr 2025
Audio-visual cross-modality knowledge transfer for machine learning-based in-situ monitoring in laser additive manufacturing
Jiarui Xie
Mutahar Safdar
Lequn Chen
Seung Ki Moon
Y. Zhao
51
1
0
09 Aug 2024
Efficient Prior Calibration From Indirect Data
O. Deniz Akyildiz
Mark Girolami
Andrew M. Stuart
Arnaud Vadeboncoeur
44
1
0
28 May 2024
Generative adversarial learning with optimal input dimension and its adaptive generator architecture
Zhiyao Tan
Ling Zhou
Huazhen Lin
GAN
44
0
0
06 May 2024
Towards Robust Graph Incremental Learning on Evolving Graphs
Junwei Su
Difan Zou
Zijun Zhang
Chuan Wu
CLL
OOD
43
18
0
20 Feb 2024
DySLIM: Dynamics Stable Learning by Invariant Measure for Chaotic Systems
Yair Schiff
Zhong Yi Wan
Jeffrey B. Parker
Stephan Hoyer
Volodymyr Kuleshov
Fei Sha
Leonardo Zepeda-Núñez
36
13
0
06 Feb 2024
Adaptive trajectory-constrained exploration strategy for deep reinforcement learning
Guojian Wang
Faguo Wu
Xiao Zhang
Ning Guo
Zhiming Zheng
41
3
0
27 Dec 2023
Evading DeepFake Detectors via Adversarial Statistical Consistency
Yang Hou
Qing Guo
Yihao Huang
Xiaofei Xie
Lei Ma
Jianjun Zhao
AAML
34
48
0
23 Apr 2023
A Semi-Bayesian Nonparametric Estimator of the Maximum Mean Discrepancy Measure: Applications in Goodness-of-Fit Testing and Generative Adversarial Networks
Forough Fazeli Asl
M. Zhang
Lizhen Lin
29
1
0
05 Mar 2023
Differentially Private Neural Tangent Kernels for Privacy-Preserving Data Generation
Yilin Yang
Kamil Adamczewski
Danica J. Sutherland
Xiaoxiao Li
Mijung Park
33
14
0
03 Mar 2023
Redes Generativas Adversarias (GAN) Fundamentos Teóricos y Aplicaciones
J. D. L. Torre
GAN
26
1
0
18 Feb 2023
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference
Ayush Bharti
Masha Naslidnyk
Oscar Key
Samuel Kaski
F. Briol
42
12
0
27 Jan 2023
Fast Inference in Denoising Diffusion Models via MMD Finetuning
Emanuele Aiello
D. Valsesia
E. Magli
DiffM
22
4
0
19 Jan 2023
Blessings and Curses of Covariate Shifts: Adversarial Learning Dynamics, Directional Convergence, and Equilibria
Tengyuan Liang
22
1
0
05 Dec 2022
Proper losses for discrete generative models
Rafael Frongillo
Dhamma Kimpara
Bo Waggoner
24
3
0
07 Nov 2022
Minimum Kernel Discrepancy Estimators
Chris J. Oates
34
10
0
28 Oct 2022
Variance-Aware Estimation of Kernel Mean Embedding
Geoffrey Wolfer
Pierre Alquier
33
4
0
13 Oct 2022
Targeted Separation and Convergence with Kernel Discrepancies
Alessandro Barp
Carl-Johann Simon-Gabriel
Mark Girolami
Lester W. Mackey
66
14
0
26 Sep 2022
Dr. Neurosymbolic, or: How I Learned to Stop Worrying and Accept Statistics
Masataro Asai
25
0
0
08 Sep 2022
Equivariant Disentangled Transformation for Domain Generalization under Combination Shift
Yivan Zhang
Jindong Wang
Xingxu Xie
Masashi Sugiyama
OOD
44
1
0
03 Aug 2022
Self-supervised learning with rotation-invariant kernels
Léon Zheng
Gilles Puy
E. Riccietti
Patrick Pérez
Rémi Gribonval
SSL
27
2
0
28 Jul 2022
Conditional Born machine for Monte Carlo event generation
Oriel Kiss
Michele Grossi
E. Kajomovitz
S. Vallecorsa
41
14
0
16 May 2022
α
α
α
-GAN: Convergence and Estimation Guarantees
Gowtham R. Kurri
Monica Welfert
Tyler Sypherd
Lalitha Sankar
GAN
98
8
0
12 May 2022
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
38
25
0
20 Mar 2022
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
27
29,986
0
01 Mar 2022
Moment Matching Deep Contrastive Latent Variable Models
Ethan Weinberger
Nicasia Beebe-Wang
Su-In Lee
31
16
0
21 Feb 2022
Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap
Charita Dellaporta
Jeremias Knoblauch
Theodoros Damoulas
F. Briol
36
42
0
09 Feb 2022
Depth and Feature Learning are Provably Beneficial for Neural Network Discriminators
Carles Domingo-Enrich
MLT
MDE
36
0
0
27 Dec 2021
Probabilistic Forecasting with Generative Networks via Scoring Rule Minimization
Lorenzo Pacchiardi
Rilwan A. Adewoyin
P. Dueben
Ritabrata Dutta
AI4TS
24
21
0
15 Dec 2021
RafterNet: Probabilistic predictions in multi-response regression
Marius Hofert
Avinash Prasad
Mu Zhu
24
2
0
02 Dec 2021
Composite Goodness-of-fit Tests with Kernels
Oscar Key
Arthur Gretton
F. Briol
T. Fernandez
36
14
0
19 Nov 2021
A Trust Crisis In Simulation-Based Inference? Your Posterior Approximations Can Be Unfaithful
Joeri Hermans
Arnaud Delaunoy
François Rozet
Antoine Wehenkel
Volodimir Begy
Gilles Louppe
64
38
0
13 Oct 2021
F-Divergences and Cost Function Locality in Generative Modelling with Quantum Circuits
Chiara Leadbeater
Louis Sharrock
Brian Coyle
Marcello Benedetti
22
11
0
08 Oct 2021
Implicit Generative Copulas
Tim Janke
M. Ghanmi
F. Steinke
35
17
0
29 Sep 2021
Reversible Gromov-Monge Sampler for Simulation-Based Inference
Y. Hur
Wenxuan Guo
Tengyuan Liang
36
9
0
28 Sep 2021
Rethinking Multidimensional Discriminator Output for Generative Adversarial Networks
M. Dai
Haibin Hang
A. Srivastava
18
3
0
08 Sep 2021
Lifelong Infinite Mixture Model Based on Knowledge-Driven Dirichlet Process
Fei Ye
A. Bors
CLL
31
18
0
25 Aug 2021
A Pragmatic Look at Deep Imitation Learning
Kai Arulkumaran
D. Lillrank
35
9
0
04 Aug 2021
Dual Training of Energy-Based Models with Overparametrized Shallow Neural Networks
Carles Domingo-Enrich
A. Bietti
Marylou Gabrié
Joan Bruna
Eric Vanden-Eijnden
FedML
43
6
0
11 Jul 2021
Discrepancy-based Inference for Intractable Generative Models using Quasi-Monte Carlo
Ziang Niu
J. Meier
F. Briol
39
12
0
22 Jun 2021
KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support
Pierre Glaser
Michael Arbel
Arthur Gretton
52
37
0
16 Jun 2021
Realizing GANs via a Tunable Loss Function
Gowtham R. Kurri
Tyler Sypherd
Lalitha Sankar
GAN
14
16
0
09 Jun 2021
Inverse design of two-dimensional materials with invertible neural networks
Victor Fung
Jiaxin Zhang
Guoxiang Hu
P. Ganesh
B. Sumpter
28
41
0
06 Jun 2021
MineGAN++: Mining Generative Models for Efficient Knowledge Transfer to Limited Data Domains
Yaxing Wang
Abel Gonzalez-Garcia
Chenshen Wu
Luis Herranz
Fahad Shahbaz Khan
Shangling Jui
Joost van de Weijer
32
6
0
28 Apr 2021
Rates of convergence for density estimation with generative adversarial networks
Nikita Puchkin
S. Samsonov
Denis Belomestny
Eric Moulines
A. Naumov
37
10
0
30 Jan 2021
Applications of multivariate quasi-random sampling with neural networks
Marius Hofert
Avinash Prasad
Mu Zhu
26
1
0
15 Dec 2020
1
2
3
Next