Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1505.03906
Cited By
Training generative neural networks via Maximum Mean Discrepancy optimization
14 May 2015
Gintare Karolina Dziugaite
Daniel M. Roy
Zoubin Ghahramani
GAN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Training generative neural networks via Maximum Mean Discrepancy optimization"
50 / 125 papers shown
Title
On the Convergence of Gradient Descent in GANs: MMD GAN As a Gradient Flow
Youssef Mroueh
Truyen V. Nguyen
29
25
0
04 Nov 2020
Rescuing neural spike train models from bad MLE
Diego M. Arribas
Yuan Zhao
Il Memming Park
37
8
0
23 Oct 2020
GANs with Variational Entropy Regularizers: Applications in Mitigating the Mode-Collapse Issue
Pirazh Khorramshahi
Hossein Souri
Ramalingam Chellappa
S. Feizi
GAN
DRL
30
4
0
24 Sep 2020
Generative models with kernel distance in data space
Szymon Knop
Marcin Mazur
Przemysław Spurek
Jacek Tabor
Igor T. Podolak
GAN
SyDa
27
11
0
15 Sep 2020
Estimating Barycenters of Measures in High Dimensions
Samuel N. Cohen
Michael Arbel
M. Deisenroth
26
22
0
14 Jul 2020
Modeling Lost Information in Lossy Image Compression
Yaolong Wang
Mingqing Xiao
Chang-Shu Liu
Shuxin Zheng
Tie-Yan Liu
32
23
0
22 Jun 2020
Reparameterized Variational Divergence Minimization for Stable Imitation
Dilip Arumugam
Debadeepta Dey
Alekh Agarwal
Asli Celikyilmaz
E. Nouri
W. Dolan
33
3
0
18 Jun 2020
Exploring the Vulnerability of Deep Neural Networks: A Study of Parameter Corruption
Xu Sun
Zhiyuan Zhang
Xuancheng Ren
Ruixuan Luo
Liangyou Li
30
39
0
10 Jun 2020
Universal Robust Regression via Maximum Mean Discrepancy
Pierre Alquier
Mathieu Gerber
38
15
0
01 Jun 2020
Generative Adversarial Networks (GANs Survey): Challenges, Solutions, and Future Directions
Divya Saxena
Jiannong Cao
AAML
AI4CE
26
287
0
30 Apr 2020
Adaptive Object Detection with Dual Multi-Label Prediction
Z. Zhao
Yuhong Guo
Haifeng Shen
Jieping Ye
27
54
0
29 Mar 2020
OpenGAN: Open Set Generative Adversarial Networks
Luke Ditria
Benjamin J. Meyer
Tom Drummond
VLM
AI4CE
GAN
43
20
0
18 Mar 2020
Multivariate time-series modeling with generative neural networks
Marius Hofert
Avinash Prasad
Mu Zhu
24
6
0
25 Feb 2020
xAI-GAN: Enhancing Generative Adversarial Networks via Explainable AI Systems
Vineel Nagisetty
Laura Graves
Joseph Scott
Vijay Ganesh
GAN
DRL
26
27
0
24 Feb 2020
A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
Jie Gui
Zhenan Sun
Yonggang Wen
Dacheng Tao
Jieping Ye
EGVM
33
821
0
20 Jan 2020
Multi-Source Domain Adaptation for Text Classification via DistanceNet-Bandits
Han Guo
Ramakanth Pasunuru
Joey Tianyi Zhou
30
114
0
13 Jan 2020
Triple Generative Adversarial Networks
Chongxuan Li
Kun Xu
Jiashuo Liu
Jun Zhu
Bo Zhang
GAN
33
41
0
20 Dec 2019
How to GAN away Detector Effects
Marco Bellagente
A. Butter
Gregor Kasieczka
Tilman Plehn
R. Winterhalder
GAN
21
86
0
01 Dec 2019
Prescribed Generative Adversarial Networks
Adji Bousso Dieng
Francisco J. R. Ruiz
David M. Blei
Michalis K. Titsias
GAN
DRL
27
61
0
09 Oct 2019
Conditional out-of-sample generation for unpaired data using trVAE
M. Lotfollahi
Mohsen Naghipourfar
Fabian J. Theis
F. A. Wolf
GAN
ViT
DRL
24
19
0
04 Oct 2019
MMD-Bayes: Robust Bayesian Estimation via Maximum Mean Discrepancy
Badr-Eddine Chérief-Abdellatif
Pierre Alquier
56
72
0
29 Sep 2019
Minimum Stein Discrepancy Estimators
Alessandro Barp
François‐Xavier Briol
Andrew B. Duncan
Mark Girolami
Lester W. Mackey
33
90
0
19 Jun 2019
Statistical Inference for Generative Models with Maximum Mean Discrepancy
François‐Xavier Briol
Alessandro Barp
Andrew B. Duncan
Mark Girolami
27
70
0
13 Jun 2019
Maximum Mean Discrepancy Gradient Flow
Michael Arbel
Anna Korba
Adil Salim
Arthur Gretton
27
159
0
11 Jun 2019
Generative Adversarial Networks in Computer Vision: A Survey and Taxonomy
Zhengwei Wang
Qi She
T. Ward
MedIm
EGVM
29
90
0
04 Jun 2019
Kernel Conditional Density Operators
Ingmar Schuster
Mattes Mollenhauer
Stefan Klus
Krikamol Muandet
30
25
0
27 May 2019
Deep Signature Transforms
Patrick Kidger
Patrick Kidger
Imanol Perez Arribas
C. Salvi
Terry Lyons
SLR
27
126
0
21 May 2019
Meta-Sim: Learning to Generate Synthetic Datasets
Amlan Kar
Aayush Prakash
Ming Liu
Eric Cameracci
Justin Yuan
Matt Rusiniak
David Acuna
Antonio Torralba
Sanja Fidler
22
248
0
25 Apr 2019
Learning Implicit Generative Models by Matching Perceptual Features
Cicero Nogueira dos Santos
Youssef Mroueh
Inkit Padhi
Pierre Dognin
GAN
43
28
0
04 Apr 2019
Nonparametric Density Estimation & Convergence Rates for GANs under Besov IPM Losses
Ananya Uppal
Shashank Singh
Barnabás Póczós
30
52
0
09 Feb 2019
Deep Generative Learning via Variational Gradient Flow
Yuan Gao
Yuling Jiao
Yang Wang
Yao Wang
Can Yang
Shunkang Zhang
27
36
0
24 Jan 2019
Kernel Change-point Detection with Auxiliary Deep Generative Models
Wei-Cheng Chang
Chun-Liang Li
Yiming Yang
Barnabás Póczós
16
67
0
18 Jan 2019
MAE: Mutual Posterior-Divergence Regularization for Variational AutoEncoders
Xuezhe Ma
Chunting Zhou
Eduard H. Hovy
DRL
28
39
0
06 Jan 2019
Improving MMD-GAN Training with Repulsive Loss Function
Wei Wang
Yuan Sun
Saman K. Halgamuge
GAN
17
79
0
24 Dec 2018
Conditional Recurrent Flow: Conditional Generation of Longitudinal Samples with Applications to Neuroimaging
Seong Jae Hwang
Zirui Tao
Won Hwa Kim
Vikas Singh
MedIm
19
12
0
24 Nov 2018
Deep Knockoffs
Yaniv Romano
Matteo Sesia
Emmanuel J. Candès
BDL
18
139
0
16 Nov 2018
Learning Temporal Point Processes via Reinforcement Learning
Shuang Li
Shuai Xiao
Shixiang Zhu
Nan Du
Yao Xie
Le Song
AI4TS
16
105
0
12 Nov 2018
Quasi-random sampling for multivariate distributions via generative neural networks
Marius Hofert
Avinash Prasad
Mu Zhu
22
14
0
01 Nov 2018
Interpolating between Optimal Transport and MMD using Sinkhorn Divergences
Jean Feydy
Thibault Séjourné
François-Xavier Vialard
S. Amari
A. Trouvé
Gabriel Peyré
OT
23
520
0
18 Oct 2018
Adversarial Balancing for Causal Inference
Michal Ozery-Flato
Pierre Thodoroff
Matan Ninio
Michal Rosen-Zvi
T. El-Hay
CML
GAN
16
25
0
17 Oct 2018
A Kernel Perspective for Regularizing Deep Neural Networks
A. Bietti
Grégoire Mialon
Dexiong Chen
Julien Mairal
16
15
0
30 Sep 2018
Learning disentangled representation from 12-lead electrograms: application in localizing the origin of Ventricular Tachycardia
P. Gyawali
B. Horácek
J. Sapp
Linwei Wang
38
3
0
04 Aug 2018
Counterfactual Mean Embeddings
Krikamol Muandet
Motonobu Kanagawa
Sorawit Saengkyongam
S. Marukatat
CML
OffRL
26
39
0
22 May 2018
Nonparametric Density Estimation under Adversarial Losses
Shashank Singh
Ananya Uppal
Boyue Li
Chun-Liang Li
Manzil Zaheer
Barnabás Póczós
GAN
29
56
0
22 May 2018
MONK -- Outlier-Robust Mean Embedding Estimation by Median-of-Means
M. Lerasle
Z. Szabó
Gaspar Massiot
Guillaume Lecué
36
35
0
13 Feb 2018
First Order Generative Adversarial Networks
Calvin Seward
Thomas Unterthiner
Urs M. Bergmann
Nikolay Jetchev
Sepp Hochreiter
GAN
40
8
0
13 Feb 2018
Demystifying MMD GANs
Mikolaj Binkowski
Danica J. Sutherland
Michael Arbel
Arthur Gretton
EGVM
43
1,454
0
04 Jan 2018
How Well Can Generative Adversarial Networks Learn Densities: A Nonparametric View
Tengyuan Liang
GAN
27
37
0
21 Dec 2017
Geometrical Insights for Implicit Generative Modeling
Léon Bottou
Martín Arjovsky
David Lopez-Paz
Maxime Oquab
32
49
0
21 Dec 2017
Understanding GANs: the LQG Setting
S. Feizi
Changho Suh
F. Xia
David Tse
42
63
0
30 Oct 2017
Previous
1
2
3
Next