Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1506.02557
Cited By
Variational Dropout and the Local Reparameterization Trick
8 June 2015
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Variational Dropout and the Local Reparameterization Trick"
36 / 236 papers shown
Title
Analyzing Inverse Problems with Invertible Neural Networks
Lynton Ardizzone
Jakob Kruse
Sebastian J. Wirkert
D. Rahner
E. Pellegrini
R. Klessen
Lena Maier-Hein
Carsten Rother
Ullrich Kothe
18
482
0
14 Aug 2018
A Survey on Methods and Theories of Quantized Neural Networks
Yunhui Guo
MQ
27
230
0
13 Aug 2018
Understanding Dropout as an Optimization Trick
Sangchul Hahn
Heeyoul Choi
ODL
13
34
0
26 Jun 2018
Structured Variational Learning of Bayesian Neural Networks with Horseshoe Priors
S. Ghosh
Jiayu Yao
Finale Doshi-Velez
BDL
UQCV
15
77
0
13 Jun 2018
Evidential Deep Learning to Quantify Classification Uncertainty
Murat Sensoy
Lance M. Kaplan
M. Kandemir
OOD
UQCV
EDL
BDL
57
951
0
05 Jun 2018
Lightweight Probabilistic Deep Networks
Jochen Gast
Stefan Roth
UQCV
OOD
BDL
30
180
0
29 May 2018
Meta-Learning Probabilistic Inference For Prediction
Jonathan Gordon
J. Bronskill
Matthias Bauer
Sebastian Nowozin
Richard E. Turner
BDL
42
263
0
24 May 2018
Towards Robust Evaluations of Continual Learning
Sebastian Farquhar
Y. Gal
CLL
28
305
0
24 May 2018
Excitation Dropout: Encouraging Plasticity in Deep Neural Networks
Andrea Zunino
Sarah Adel Bargal
Pietro Morerio
Jianming Zhang
Stan Sclaroff
Vittorio Murino
21
23
0
23 May 2018
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
52
358
0
18 May 2018
Real-Time Prediction of the Duration of Distribution System Outages
Aaron Jaech
Baosen Zhang
Mari Ostendorf
D. Kirschen
11
74
0
03 Apr 2018
Neural Autoregressive Flows
Chin-Wei Huang
David M. Krueger
Alexandre Lacoste
Aaron Courville
DRL
AI4CE
19
432
0
03 Apr 2018
Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches
Yeming Wen
Paul Vicol
Jimmy Ba
Dustin Tran
Roger C. Grosse
BDL
9
307
0
12 Mar 2018
Synthesizing Neural Network Controllers with Probabilistic Model based Reinforcement Learning
J. A. G. Higuera
D. Meger
Gregory Dudek
BDL
22
39
0
06 Mar 2018
Compressing Neural Networks using the Variational Information Bottleneck
Bin Dai
Chen Zhu
David Wipf
MLT
22
178
0
28 Feb 2018
Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling
C. Riquelme
George Tucker
Jasper Snoek
BDL
39
366
0
26 Feb 2018
Bayesian Incremental Learning for Deep Neural Networks
Max Kochurov
T. Garipov
D. Podoprikhin
Dmitry Molchanov
Arsenii Ashukha
Dmitry Vetrov
OOD
CLL
BDL
15
22
0
20 Feb 2018
Uncertainty Estimation via Stochastic Batch Normalization
Andrei Atanov
Arsenii Ashukha
Dmitry Molchanov
Kirill Neklyudov
Dmitry Vetrov
UQCV
BDL
34
47
0
13 Feb 2018
Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization properties of Entropy-SGD and data-dependent priors
Gintare Karolina Dziugaite
Daniel M. Roy
MLT
22
144
0
26 Dec 2017
Convergent Block Coordinate Descent for Training Tikhonov Regularized Deep Neural Networks
Ziming Zhang
M. Brand
26
70
0
20 Nov 2017
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
38
684
0
15 Nov 2017
Meta-Learning by Adjusting Priors Based on Extended PAC-Bayes Theory
Ron Amit
Ron Meir
BDL
MLT
19
173
0
03 Nov 2017
Learning Discrete Weights Using the Local Reparameterization Trick
Oran Shayer
Dan Levi
Ethan Fetaya
13
88
0
21 Oct 2017
Bayesian Compression for Deep Learning
Christos Louizos
Karen Ullrich
Max Welling
UQCV
BDL
17
479
0
24 May 2017
Deep Relaxation: partial differential equations for optimizing deep neural networks
Pratik Chaudhari
Adam M. Oberman
Stanley Osher
Stefano Soatto
G. Carlier
24
153
0
17 Apr 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,660
0
05 Dec 2016
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
Zhe Gan
Chunyuan Li
Changyou Chen
Yunchen Pu
Qinliang Su
Lawrence Carin
BDL
UQCV
50
41
0
23 Nov 2016
Regularization for Unsupervised Deep Neural Nets
Baiyang Wang
Diego Klabjan
BDL
23
25
0
15 Aug 2016
Fast
ε
ε
ε
-free Inference of Simulation Models with Bayesian Conditional Density Estimation
George Papamakarios
Iain Murray
TPM
30
158
0
20 May 2016
Structured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors
Christos Louizos
Max Welling
BDL
20
253
0
15 Mar 2016
Improved Dropout for Shallow and Deep Learning
Zhe Li
Boqing Gong
Tianbao Yang
BDL
SyDa
27
79
0
06 Feb 2016
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks
Chunyuan Li
Changyou Chen
David Carlson
Lawrence Carin
ODL
BDL
27
319
0
23 Dec 2015
A Theoretically Grounded Application of Dropout in Recurrent Neural Networks
Y. Gal
Zoubin Ghahramani
UQCV
DRL
BDL
17
1,642
0
16 Dec 2015
Variational Auto-encoded Deep Gaussian Processes
Zhenwen Dai
Andreas C. Damianou
Javier I. González
Neil D. Lawrence
BDL
18
130
0
19 Nov 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,634
0
03 Jul 2012
Previous
1
2
3
4
5