ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.02557
  4. Cited By
Variational Dropout and the Local Reparameterization Trick

Variational Dropout and the Local Reparameterization Trick

8 June 2015
Diederik P. Kingma
Tim Salimans
Max Welling
    BDL
ArXivPDFHTML

Papers citing "Variational Dropout and the Local Reparameterization Trick"

50 / 227 papers shown
Title
Bayesian Neural Network Language Modeling for Speech Recognition
Bayesian Neural Network Language Modeling for Speech Recognition
Boyang Xue
Shoukang Hu
Junhao Xu
Mengzhe Geng
Xunying Liu
Helen M. Meng
UQCV
BDL
31
14
0
28 Aug 2022
Efficient Adaptive Activation Rounding for Post-Training Quantization
Efficient Adaptive Activation Rounding for Post-Training Quantization
Zhengyi Li
Cong Guo
Zhanda Zhu
Yangjie Zhou
Yuxian Qiu
Xiaotian Gao
Jingwen Leng
Minyi Guo
MQ
27
3
0
25 Aug 2022
Diagnose Like a Radiologist: Hybrid Neuro-Probabilistic Reasoning for
  Attribute-Based Medical Image Diagnosis
Diagnose Like a Radiologist: Hybrid Neuro-Probabilistic Reasoning for Attribute-Based Medical Image Diagnosis
Gangming Zhao
Quanlong Feng
Chaoqi Chen
Zhen Zhou
Yizhou Yu
34
31
0
19 Aug 2022
DIET: Conditional independence testing with marginal dependence measures
  of residual information
DIET: Conditional independence testing with marginal dependence measures of residual information
Mukund Sudarshan
A. Puli
Wesley Tansey
Rajesh Ranganath
16
2
0
18 Aug 2022
Minimum Description Length Control
Minimum Description Length Control
Theodore H. Moskovitz
Ta-Chu Kao
M. Sahani
M. Botvinick
18
1
0
17 Jul 2022
Sample-dependent Adaptive Temperature Scaling for Improved Calibration
Sample-dependent Adaptive Temperature Scaling for Improved Calibration
Thomas Joy
Francesco Pinto
Ser-Nam Lim
Philip H. S. Torr
P. Dokania
UQCV
21
30
0
13 Jul 2022
Uncertainty-Aware Learning Against Label Noise on Imbalanced Datasets
Uncertainty-Aware Learning Against Label Noise on Imbalanced Datasets
Yingsong Huang
Bing Bai
Shengwei Zhao
Kun Bai
Fei-Yue Wang
NoLa
23
43
0
12 Jul 2022
RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and
  Out Distribution Robustness
RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and Out Distribution Robustness
Francesco Pinto
Harry Yang
Ser-Nam Lim
Philip H. S. Torr
P. Dokania
UQCV
27
34
0
29 Jun 2022
Distributional Gaussian Processes Layers for Out-of-Distribution
  Detection
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
21
0
0
27 Jun 2022
Information Geometry of Dropout Training
Information Geometry of Dropout Training
Masanari Kimura
H. Hino
9
2
0
22 Jun 2022
Influence of uncertainty estimation techniques on false-positive
  reduction in liver lesion detection
Influence of uncertainty estimation techniques on false-positive reduction in liver lesion detection
Ishaan Bhat
J. Pluim
M. Viergever
Hugo J. Kuijf
MedIm
21
4
0
22 Jun 2022
CARD: Classification and Regression Diffusion Models
CARD: Classification and Regression Diffusion Models
Xizewen Han
Huangjie Zheng
Mingyuan Zhou
DiffM
40
109
0
15 Jun 2022
Functional Ensemble Distillation
Functional Ensemble Distillation
Coby Penso
Idan Achituve
Ethan Fetaya
FedML
25
2
0
05 Jun 2022
Gating Dropout: Communication-efficient Regularization for Sparsely
  Activated Transformers
Gating Dropout: Communication-efficient Regularization for Sparsely Activated Transformers
R. Liu
Young Jin Kim
Alexandre Muzio
Hany Awadalla
MoE
42
22
0
28 May 2022
A General Framework for quantifying Aleatoric and Epistemic uncertainty
  in Graph Neural Networks
A General Framework for quantifying Aleatoric and Epistemic uncertainty in Graph Neural Networks
Sai Munikoti
D. Agarwal
Laya Das
Balasubramaniam Natarajan
BDL
UD
31
13
0
20 May 2022
Simple Regularisation for Uncertainty-Aware Knowledge Distillation
Simple Regularisation for Uncertainty-Aware Knowledge Distillation
Martin Ferianc
Miguel R. D. Rodrigues
UQCV
37
0
0
19 May 2022
Bayesian Convolutional Neural Networks for Limited Data Hyperspectral
  Remote Sensing Image Classification
Bayesian Convolutional Neural Networks for Limited Data Hyperspectral Remote Sensing Image Classification
M. Joshaghani
Amirabbas Davari
F. Hatamian
Andreas K. Maier
Christian Riess
UQCV
BDL
8
7
0
19 May 2022
AODisaggregation: toward global aerosol vertical profiles
AODisaggregation: toward global aerosol vertical profiles
S. Bouabid
D. Watson‐Parris
Sofija Stefanović
A. Nenes
Dino Sejdinovic
24
0
0
06 May 2022
Neural Processes with Stochastic Attention: Paying more attention to the
  context dataset
Neural Processes with Stochastic Attention: Paying more attention to the context dataset
Mingyu Kim
Kyeongryeol Go
Se-Young Yun
21
20
0
11 Apr 2022
Probabilistic Representations for Video Contrastive Learning
Probabilistic Representations for Video Contrastive Learning
Jungin Park
Jiyoung Lee
Ig-Jae Kim
K. Sohn
SSL
26
43
0
08 Apr 2022
A Survey on Dropout Methods and Experimental Verification in
  Recommendation
A Survey on Dropout Methods and Experimental Verification in Recommendation
Y. Li
Weizhi Ma
C. L. Philip Chen
M. Zhang
Yiqun Liu
Shaoping Ma
Yue Yang
33
9
0
05 Apr 2022
MaxDropoutV2: An Improved Method to Drop out Neurons in Convolutional
  Neural Networks
MaxDropoutV2: An Improved Method to Drop out Neurons in Convolutional Neural Networks
C. F. G. Santos
Mateus Roder
L. A. Passos
João Paulo Papa
27
1
0
05 Mar 2022
Theoretical Error Analysis of Entropy Approximation for Gaussian Mixture
Theoretical Error Analysis of Entropy Approximation for Gaussian Mixture
Takashi Furuya
Hiroyuki Kusumoto
K. Taniguchi
Naoya Kanno
Kazuma Suetake
11
1
0
26 Feb 2022
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCV
BDL
52
56
0
23 Feb 2022
Non-Volatile Memory Accelerated Posterior Estimation
Non-Volatile Memory Accelerated Posterior Estimation
A. Wood
Moshik Hershcovitch
Daniel Waddington
Sarel Cohen
Peter Chin
13
1
0
21 Feb 2022
Accurate Prediction and Uncertainty Estimation using Decoupled
  Prediction Interval Networks
Accurate Prediction and Uncertainty Estimation using Decoupled Prediction Interval Networks
Kinjal Patel
Steven Waslander
UQCV
15
3
0
19 Feb 2022
Transfer and Marginalize: Explaining Away Label Noise with Privileged
  Information
Transfer and Marginalize: Explaining Away Label Noise with Privileged Information
Mark Collier
Rodolphe Jenatton
Efi Kokiopoulou
Jesse Berent
25
13
0
18 Feb 2022
Variational Neural Temporal Point Process
Variational Neural Temporal Point Process
Deokjun Eom
Sehyun Lee
Jaesik Choi
BDL
AI4TS
24
2
0
17 Feb 2022
Demystify Optimization and Generalization of Over-parameterized
  PAC-Bayesian Learning
Demystify Optimization and Generalization of Over-parameterized PAC-Bayesian Learning
Wei Huang
Chunrui Liu
Yilan Chen
Tianyu Liu
R. Xu
BDL
MLT
19
2
0
04 Feb 2022
Do Differentiable Simulators Give Better Policy Gradients?
Do Differentiable Simulators Give Better Policy Gradients?
H. Suh
Max Simchowitz
K. Zhang
Russ Tedrake
25
94
0
02 Feb 2022
Signing the Supermask: Keep, Hide, Invert
Signing the Supermask: Keep, Hide, Invert
Nils Koster
O. Grothe
Achim Rettinger
25
10
0
31 Jan 2022
Resource-efficient Deep Neural Networks for Automotive Radar
  Interference Mitigation
Resource-efficient Deep Neural Networks for Automotive Radar Interference Mitigation
J. Rock
Wolfgang Roth
Máté Tóth
Paul Meissner
Franz Pernkopf
14
43
0
25 Jan 2022
Recursive Least Squares for Training and Pruning Convolutional Neural
  Networks
Recursive Least Squares for Training and Pruning Convolutional Neural Networks
Tianzong Yu
Chunyuan Zhang
Yuan Wang
Meng-tao Ma
Qingwei Song
22
1
0
13 Jan 2022
Transformer Uncertainty Estimation with Hierarchical Stochastic
  Attention
Transformer Uncertainty Estimation with Hierarchical Stochastic Attention
Jiahuan Pei
Cheng-Yu Wang
Gyuri Szarvas
19
22
0
27 Dec 2021
Measure and Improve Robustness in NLP Models: A Survey
Measure and Improve Robustness in NLP Models: A Survey
Xuezhi Wang
Haohan Wang
Diyi Yang
139
130
0
15 Dec 2021
On the Convergence of Shallow Neural Network Training with Randomly
  Masked Neurons
On the Convergence of Shallow Neural Network Training with Randomly Masked Neurons
Fangshuo Liao
Anastasios Kyrillidis
36
16
0
05 Dec 2021
Neighborhood Spatial Aggregation MC Dropout for Efficient
  Uncertainty-aware Semantic Segmentation in Point Clouds
Neighborhood Spatial Aggregation MC Dropout for Efficient Uncertainty-aware Semantic Segmentation in Point Clouds
Chao Qi
Jianqin Yin
UQCV
3DPC
BDL
22
2
0
05 Dec 2021
Why Calibration Error is Wrong Given Model Uncertainty: Using Posterior
  Predictive Checks with Deep Learning
Why Calibration Error is Wrong Given Model Uncertainty: Using Posterior Predictive Checks with Deep Learning
Achintya Gopal
UQCV
28
1
0
02 Dec 2021
Probabilistic Approach for Road-Users Detection
Probabilistic Approach for Road-Users Detection
Gledson Melotti
Weihao Lu
Pedro Conde
Dezong Zhao
A. Asvadi
Nuno Gonçalves
C. Premebida
27
2
0
02 Dec 2021
One model Packs Thousands of Items with Recurrent Conditional Query
  Learning
One model Packs Thousands of Items with Recurrent Conditional Query Learning
Dongda Li
Zhaoquan Gu
Yuexuan Wang
Changwei Ren
F. Lau
27
17
0
12 Nov 2021
Multi-Task Neural Processes
Multi-Task Neural Processes
Jiayi Shen
Xiantong Zhen
M. Worring
Ling Shao
BDL
16
8
0
10 Nov 2021
A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent
  Advances and Applications
A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent Advances and Applications
Xinlei Zhou
Han Liu
Farhad Pourpanah
T. Zeng
Xizhao Wang
UQCV
UD
19
58
0
03 Nov 2021
Pathologies in priors and inference for Bayesian transformers
Pathologies in priors and inference for Bayesian transformers
Tristan Cinquin
Alexander Immer
Max Horn
Vincent Fortuin
UQCV
BDL
MedIm
31
9
0
08 Oct 2021
Improving Adversarial Robustness for Free with Snapshot Ensemble
Improving Adversarial Robustness for Free with Snapshot Ensemble
Yihao Wang
AAML
UQCV
9
1
0
07 Oct 2021
TyXe: Pyro-based Bayesian neural nets for Pytorch
TyXe: Pyro-based Bayesian neural nets for Pytorch
H. Ritter
Theofanis Karaletsos
OOD
MU
BDL
19
6
0
01 Oct 2021
Using Soft Labels to Model Uncertainty in Medical Image Segmentation
Using Soft Labels to Model Uncertainty in Medical Image Segmentation
Joao Lourencco Silva
Arlindo L. Oliveira
UQCV
16
19
0
26 Sep 2021
A framework for benchmarking uncertainty in deep regression
A framework for benchmarking uncertainty in deep regression
F. Schmähling
Jörg Martin
Clemens Elster
UQCV
32
8
0
10 Sep 2021
Stochastic Neural Radiance Fields: Quantifying Uncertainty in Implicit
  3D Representations
Stochastic Neural Radiance Fields: Quantifying Uncertainty in Implicit 3D Representations
Jianxiong Shen
Adria Ruiz
Antonio Agudo
Francesc Moreno-Noguer
BDL
22
68
0
05 Sep 2021
Layer-wise Model Pruning based on Mutual Information
Layer-wise Model Pruning based on Mutual Information
Chun Fan
Jiwei Li
Xiang Ao
Fei Wu
Yuxian Meng
Xiaofei Sun
38
19
0
28 Aug 2021
Explaining Bayesian Neural Networks
Explaining Bayesian Neural Networks
Kirill Bykov
Marina M.-C. Höhne
Adelaida Creosteanu
Klaus-Robert Muller
Frederick Klauschen
Shinichi Nakajima
Marius Kloft
BDL
AAML
28
25
0
23 Aug 2021
Previous
12345
Next