ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.04416
  4. Cited By
Bayesian Dark Knowledge

Bayesian Dark Knowledge

14 June 2015
Masashi Sugiyama
Vivek Rathod
R. Garnett
Max Welling
    BDL
    UQCV
ArXivPDFHTML

Papers citing "Bayesian Dark Knowledge"

39 / 39 papers shown
Title
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
79
1
0
25 Nov 2024
Variational Prediction
Variational Prediction
Alexander A. Alemi
Ben Poole
BDL
6
2
0
14 Jul 2023
Analyzing Compression Techniques for Computer Vision
Analyzing Compression Techniques for Computer Vision
Maniratnam Mandal
Imran Khan
11
1
0
14 May 2023
SBPF: Sensitiveness Based Pruning Framework For Convolutional Neural
  Network On Image Classification
SBPF: Sensitiveness Based Pruning Framework For Convolutional Neural Network On Image Classification
Yihe Lu
Maoguo Gong
Wei Zhao
Kaiyuan Feng
Hao Li
VLM
21
0
0
09 Aug 2022
Functional Ensemble Distillation
Functional Ensemble Distillation
Coby Penso
Idan Achituve
Ethan Fetaya
FedML
23
2
0
05 Jun 2022
Blueprint Separable Residual Network for Efficient Image
  Super-Resolution
Blueprint Separable Residual Network for Efficient Image Super-Resolution
Zheyu Li
Yingqi Liu
Xiangyu Chen
Haoming Cai
Jinjin Gu
Yu Qiao
Chao Dong
19
131
0
12 May 2022
Image-to-Lidar Self-Supervised Distillation for Autonomous Driving Data
Image-to-Lidar Self-Supervised Distillation for Autonomous Driving Data
Corentin Sautier
Gilles Puy
Spyros Gidaris
Alexandre Boulch
Andrei Bursuc
Renaud Marlet
3DPC
15
117
0
30 Mar 2022
STUN: Self-Teaching Uncertainty Estimation for Place Recognition
STUN: Self-Teaching Uncertainty Estimation for Place Recognition
Kaiwen Cai
Chris Xiaoxuan Lu
Xiaowei Huang
11
10
0
03 Mar 2022
Class Token and Knowledge Distillation for Multi-head Self-Attention
  Speaker Verification Systems
Class Token and Knowledge Distillation for Multi-head Self-Attention Speaker Verification Systems
Victoria Mingote
A. Miguel
A. O. Giménez
EDUARDO LLEIDA SOLANO
25
10
0
06 Nov 2021
The Bayesian Learning Rule
The Bayesian Learning Rule
Mohammad Emtiyaz Khan
Håvard Rue
BDL
50
73
0
09 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
30
1,108
0
07 Jul 2021
Laplace Redux -- Effortless Bayesian Deep Learning
Laplace Redux -- Effortless Bayesian Deep Learning
Erik A. Daxberger
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Matthias Bauer
Philipp Hennig
BDL
UQCV
33
288
0
28 Jun 2021
Post-hoc loss-calibration for Bayesian neural networks
Post-hoc loss-calibration for Bayesian neural networks
Meet P. Vadera
S. Ghosh
Kenney Ng
Benjamin M. Marlin
UQCV
BDL
25
7
0
13 Jun 2021
Infinitely Deep Bayesian Neural Networks with Stochastic Differential
  Equations
Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations
Winnie Xu
Ricky T. Q. Chen
Xuechen Li
D. Duvenaud
BDL
UQCV
13
46
0
12 Feb 2021
Dirichlet Pruning for Neural Network Compression
Dirichlet Pruning for Neural Network Compression
Kamil Adamczewski
Mijung Park
22
3
0
10 Nov 2020
URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference
  Methods for Deep Neural Networks
URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference Methods for Deep Neural Networks
Meet P. Vadera
Adam D. Cobb
B. Jalaeian
Benjamin M. Marlin
BDL
UQCV
6
16
0
08 Jul 2020
Generalized Bayesian Posterior Expectation Distillation for Deep Neural
  Networks
Generalized Bayesian Posterior Expectation Distillation for Deep Neural Networks
Meet P. Vadera
B. Jalaeian
Benjamin M. Marlin
BDL
FedML
UQCV
9
20
0
16 May 2020
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep
  Learning
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
Arsenii Ashukha
Alexander Lyzhov
Dmitry Molchanov
Dmitry Vetrov
UQCV
FedML
17
314
0
15 Feb 2020
Self-Distillation Amplifies Regularization in Hilbert Space
Self-Distillation Amplifies Regularization in Hilbert Space
H. Mobahi
Mehrdad Farajtabar
Peter L. Bartlett
19
226
0
13 Feb 2020
Assessing the Adversarial Robustness of Monte Carlo and Distillation
  Methods for Deep Bayesian Neural Network Classification
Assessing the Adversarial Robustness of Monte Carlo and Distillation Methods for Deep Bayesian Neural Network Classification
Meet P. Vadera
Satya Narayan Shukla
B. Jalaeian
Benjamin M. Marlin
AAML
BDL
9
6
0
07 Feb 2020
Bayesian Graph Convolutional Neural Networks using Node Copying
Bayesian Graph Convolutional Neural Networks using Node Copying
Soumyasundar Pal
Florence Regol
Mark J. Coates
BDL
GNN
19
12
0
08 Nov 2019
Training-Free Uncertainty Estimation for Dense Regression: Sensitivity
  as a Surrogate
Training-Free Uncertainty Estimation for Dense Regression: Sensitivity as a Surrogate
Lu Mi
Hao Wang
Yonglong Tian
Hao He
Nir Shavit
UQCV
21
29
0
28 Sep 2019
Stochastic gradient Markov chain Monte Carlo
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
14
135
0
16 Jul 2019
Efficient Evaluation-Time Uncertainty Estimation by Improved
  Distillation
Efficient Evaluation-Time Uncertainty Estimation by Improved Distillation
Erik Englesson
Hossein Azizpour
UQCV
6
7
0
12 Jun 2019
OpenEI: An Open Framework for Edge Intelligence
OpenEI: An Open Framework for Edge Intelligence
Xingzhou Zhang
Yifan Wang
Sidi Lu
Liangkai Liu
Lanyu Xu
Weisong Shi
21
101
0
05 Jun 2019
Ensemble Distribution Distillation
Ensemble Distribution Distillation
A. Malinin
Bruno Mlodozeniec
Mark J. F. Gales
UQCV
17
230
0
30 Apr 2019
Bayesian graph convolutional neural networks for semi-supervised
  classification
Bayesian graph convolutional neural networks for semi-supervised classification
Yingxue Zhang
Soumyasundar Pal
Mark J. Coates
Deniz Üstebay
GNN
BDL
19
227
0
27 Nov 2018
A First Look at Deep Learning Apps on Smartphones
A First Look at Deep Learning Apps on Smartphones
Mengwei Xu
Jiawei Liu
Yuanqiang Liu
F. Lin
Yunxin Liu
Xuanzhe Liu
HAI
17
177
0
08 Nov 2018
SCSP: Spectral Clustering Filter Pruning with Soft Self-adaption Manners
SCSP: Spectral Clustering Filter Pruning with Soft Self-adaption Manners
Huiyuan Zhuo
Xuelin Qian
Yanwei Fu
Heng Yang
Xiangyang Xue
14
37
0
14 Jun 2018
Lightweight Probabilistic Deep Networks
Lightweight Probabilistic Deep Networks
Jochen Gast
Stefan Roth
UQCV
OOD
BDL
22
180
0
29 May 2018
Learning Deep Representations with Probabilistic Knowledge Transfer
Learning Deep Representations with Probabilistic Knowledge Transfer
Nikolaos Passalis
Anastasios Tefas
29
406
0
28 Mar 2018
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
36
684
0
15 Nov 2017
Continuous-Time Flows for Efficient Inference and Density Estimation
Continuous-Time Flows for Efficient Inference and Density Estimation
Changyou Chen
Chunyuan Li
Liquan Chen
Wenlin Wang
Yunchen Pu
Lawrence Carin
TPM
32
57
0
04 Sep 2017
Learning and Refining of Privileged Information-based RNNs for Action
  Recognition from Depth Sequences
Learning and Refining of Privileged Information-based RNNs for Action Recognition from Depth Sequences
Zhiyuan Shi
Tae-Kyun Kim
14
80
0
28 Mar 2017
Scalable Bayesian Learning of Recurrent Neural Networks for Language
  Modeling
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
Zhe Gan
Chunyuan Li
Changyou Chen
Yunchen Pu
Qinliang Su
Lawrence Carin
BDL
UQCV
34
41
0
23 Nov 2016
Towards Bayesian Deep Learning: A Framework and Some Existing Methods
Towards Bayesian Deep Learning: A Framework and Some Existing Methods
Hao Wang
Dit-Yan Yeung
BDL
18
223
0
24 Aug 2016
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural
  Networks
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks
Chunyuan Li
Changyou Chen
David Carlson
Lawrence Carin
ODL
BDL
16
320
0
23 Dec 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
252
9,134
0
06 Jun 2015
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
170
3,260
0
09 Jun 2012
1