ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.04696
  4. Cited By
A Complete Recipe for Stochastic Gradient MCMC
v1v2 (latest)

A Complete Recipe for Stochastic Gradient MCMC

15 June 2015
Yian Ma
Tianqi Chen
E. Fox
    BDLSyDa
ArXiv (abs)PDFHTML

Papers citing "A Complete Recipe for Stochastic Gradient MCMC"

50 / 165 papers shown
Title
Recent advances in deep learning theory
Recent advances in deep learning theory
Fengxiang He
Dacheng Tao
AI4CE
130
51
0
20 Dec 2020
Multi-fidelity Bayesian Neural Networks: Algorithms and Applications
Multi-fidelity Bayesian Neural Networks: Algorithms and Applications
Xuhui Meng
H. Babaee
George Karniadakis
67
132
0
19 Dec 2020
Noise and Fluctuation of Finite Learning Rate Stochastic Gradient
  Descent
Noise and Fluctuation of Finite Learning Rate Stochastic Gradient Descent
Kangqiao Liu
Liu Ziyin
Masakuni Ueda
MLT
146
39
0
07 Dec 2020
State-Dependent Temperature Control for Langevin Diffusions
State-Dependent Temperature Control for Langevin Diffusions
Xuefeng Gao
Z. Xu
X. Zhou
94
28
0
15 Nov 2020
A Contour Stochastic Gradient Langevin Dynamics Algorithm for
  Simulations of Multi-modal Distributions
A Contour Stochastic Gradient Langevin Dynamics Algorithm for Simulations of Multi-modal Distributions
Wei Deng
Guang Lin
F. Liang
BDL
78
28
0
19 Oct 2020
Bayesian Inference for Optimal Transport with Stochastic Cost
Bayesian Inference for Optimal Transport with Stochastic Cost
Anton Mallasto
Markus Heinonen
Samuel Kaski
OT
84
1
0
19 Oct 2020
Federated Learning via Posterior Averaging: A New Perspective and
  Practical Algorithms
Federated Learning via Posterior Averaging: A New Perspective and Practical Algorithms
Maruan Al-Shedivat
Jennifer Gillenwater
Eric Xing
Afshin Rostamizadeh
FedML
126
112
0
11 Oct 2020
MCMC-Interactive Variational Inference
MCMC-Interactive Variational Inference
Quan Zhang
Huangjie Zheng
Mingyuan Zhou
49
1
0
02 Oct 2020
Action and Perception as Divergence Minimization
Action and Perception as Divergence Minimization
Danijar Hafner
Pedro A. Ortega
Jimmy Ba
Thomas Parr
Karl J. Friston
N. Heess
91
53
0
03 Sep 2020
Variance reduction for dependent sequences with applications to
  Stochastic Gradient MCMC
Variance reduction for dependent sequences with applications to Stochastic Gradient MCMC
Denis Belomestny
L. Iosipoi
Eric Moulines
A. Naumov
S. Samsonov
72
6
0
16 Aug 2020
Non-convex Learning via Replica Exchange Stochastic Gradient MCMC
Non-convex Learning via Replica Exchange Stochastic Gradient MCMC
Wei Deng
Qi Feng
Liyao (Mars) Gao
F. Liang
Guang Lin
BDL
77
47
0
12 Aug 2020
A Survey on Large-scale Machine Learning
A Survey on Large-scale Machine Learning
Meng Wang
Weijie Fu
Xiangnan He
Shijie Hao
Xindong Wu
84
112
0
10 Aug 2020
Tighter Generalization Bounds for Iterative Differentially Private
  Learning Algorithms
Tighter Generalization Bounds for Iterative Differentially Private Learning Algorithms
Fengxiang He
Bohan Wang
Dacheng Tao
FedML
55
18
0
18 Jul 2020
Deep Autoencoding Topic Model with Scalable Hybrid Bayesian Inference
Deep Autoencoding Topic Model with Scalable Hybrid Bayesian Inference
Hao Zhang
Bo Chen
Yulai Cong
D. Guo
Hongwei Liu
Mingyuan Zhou
BDL
64
28
0
15 Jun 2020
Stochastic Segmentation Networks: Modelling Spatially Correlated
  Aleatoric Uncertainty
Stochastic Segmentation Networks: Modelling Spatially Correlated Aleatoric Uncertainty
Miguel A. B. Monteiro
Loic Le Folgoc
Daniel Coelho De Castro
Nick Pawlowski
Bernardo Marques
Konstantinos Kamnitsas
Mark van der Wilk
Ben Glocker
UQCVBDL
47
115
0
10 Jun 2020
Bayesian Graph Neural Networks with Adaptive Connection Sampling
Bayesian Graph Neural Networks with Adaptive Connection Sampling
Arman Hasanzadeh
Ehsan Hajiramezanali
Shahin Boluki
Mingyuan Zhou
N. Duffield
Krishna R. Narayanan
Xiaoning Qian
BDL
89
118
0
07 Jun 2020
VarFA: A Variational Factor Analysis Framework For Efficient Bayesian
  Learning Analytics
VarFA: A Variational Factor Analysis Framework For Efficient Bayesian Learning Analytics
Zichao Wang
Yi Gu
Andrew Lan
Richard Baraniuk
53
10
0
27 May 2020
On the Convergence of Langevin Monte Carlo: The Interplay between Tail
  Growth and Smoothness
On the Convergence of Langevin Monte Carlo: The Interplay between Tail Growth and Smoothness
Murat A. Erdogdu
Rasa Hosseinzadeh
88
77
0
27 May 2020
Federated Stochastic Gradient Langevin Dynamics
Federated Stochastic Gradient Langevin Dynamics
Khaoula El Mekkaoui
Diego Mesquita
P. Blomstedt
Samuel Kaski
FedML
77
24
0
23 Apr 2020
Stabilizing Training of Generative Adversarial Nets via Langevin Stein
  Variational Gradient Descent
Stabilizing Training of Generative Adversarial Nets via Langevin Stein Variational Gradient Descent
Dong Wang
Xiaoqian Qin
F. Song
Li Cheng
GAN
102
22
0
22 Apr 2020
Variational Inference with Vine Copulas: An efficient Approach for
  Bayesian Computer Model Calibration
Variational Inference with Vine Copulas: An efficient Approach for Bayesian Computer Model Calibration
Vojtech Kejzlar
T. Maiti
56
6
0
28 Mar 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and
  Inverse PDE Problems with Noisy Data
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
247
796
0
13 Mar 2020
Stochastically Differentiable Probabilistic Programs
Stochastically Differentiable Probabilistic Programs
David Tolpin
Yuanshuo Zhou
Hongseok Yang
BDL
37
0
0
02 Mar 2020
AMAGOLD: Amortized Metropolis Adjustment for Efficient Stochastic
  Gradient MCMC
AMAGOLD: Amortized Metropolis Adjustment for Efficient Stochastic Gradient MCMC
Ruqi Zhang
A. Feder Cooper
Christopher De Sa
83
18
0
29 Feb 2020
On Thompson Sampling with Langevin Algorithms
On Thompson Sampling with Langevin Algorithms
Eric Mazumdar
Aldo Pacchiano
Yi-An Ma
Peter L. Bartlett
Michael I. Jordan
67
11
0
23 Feb 2020
Improving Sampling Accuracy of Stochastic Gradient MCMC Methods via
  Non-uniform Subsampling of Gradients
Improving Sampling Accuracy of Stochastic Gradient MCMC Methods via Non-uniform Subsampling of Gradients
Ruilin Li
Xin Wang
H. Zha
Molei Tao
34
4
0
20 Feb 2020
Being Bayesian about Categorical Probability
Being Bayesian about Categorical Probability
Taejong Joo
U. Chung
Minji Seo
UQCVBDL
95
61
0
19 Feb 2020
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo
  under local conditions for nonconvex optimization
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo under local conditions for nonconvex optimization
Ömer Deniz Akyildiz
Sotirios Sabanis
97
17
0
13 Feb 2020
Learnable Bernoulli Dropout for Bayesian Deep Learning
Learnable Bernoulli Dropout for Bayesian Deep Learning
Shahin Boluki
Randy Ardywibowo
Siamak Zamani Dadaneh
Mingyuan Zhou
Xiaoning Qian
BDL
63
34
0
12 Feb 2020
The Indian Chefs Process
The Indian Chefs Process
Patrick Dallaire
L. Ambrogioni
Ludovic Trottier
Umut Güçlü
Max Hinne
Philippe Giguère
B. Chaib-draa
Marcel van Gerven
François Laviolette
30
1
0
29 Jan 2020
The reproducing Stein kernel approach for post-hoc corrected sampling
The reproducing Stein kernel approach for post-hoc corrected sampling
Liam Hodgkinson
R. Salomone
Fred Roosta
72
27
0
25 Jan 2020
Replica Exchange for Non-Convex Optimization
Replica Exchange for Non-Convex Optimization
Jing-rong Dong
Xin T. Tong
108
21
0
23 Jan 2020
Recurrent Hierarchical Topic-Guided RNN for Language Generation
Recurrent Hierarchical Topic-Guided RNN for Language Generation
D. Guo
Bo Chen
Ruiying Lu
Mingyuan Zhou
BDLLRM
80
8
0
21 Dec 2019
Quantum-Inspired Hamiltonian Monte Carlo for Bayesian Sampling
Quantum-Inspired Hamiltonian Monte Carlo for Bayesian Sampling
Ziming Liu
Zheng Zhang
54
11
0
04 Dec 2019
Maximum entropy methods for texture synthesis: theory and practice
Maximum entropy methods for texture synthesis: theory and practice
Valentin De Bortoli
A. Desolneux
Alain Durmus
B. Galerne
Arthur Leclaire
GAN
77
5
0
03 Dec 2019
Bayesian interpretation of SGD as Ito process
Bayesian interpretation of SGD as Ito process
Soma Yokoi
Issei Sato
38
5
0
20 Nov 2019
Proximal Langevin Algorithm: Rapid Convergence Under Isoperimetry
Proximal Langevin Algorithm: Rapid Convergence Under Isoperimetry
Andre Wibisono
140
49
0
04 Nov 2019
Laplacian Smoothing Stochastic Gradient Markov Chain Monte Carlo
Laplacian Smoothing Stochastic Gradient Markov Chain Monte Carlo
Bao Wang
Difan Zou
Quanquan Gu
Stanley Osher
BDL
54
9
0
02 Nov 2019
An Adaptive Empirical Bayesian Method for Sparse Deep Learning
An Adaptive Empirical Bayesian Method for Sparse Deep Learning
Wei Deng
Xiao Zhang
F. Liang
Guang Lin
BDL
126
44
0
23 Oct 2019
The Randomized Midpoint Method for Log-Concave Sampling
The Randomized Midpoint Method for Log-Concave Sampling
Ruoqi Shen
Y. Lee
125
118
0
12 Sep 2019
High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm
High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm
Wenlong Mou
Yian Ma
Martin J. Wainwright
Peter L. Bartlett
Michael I. Jordan
DiffM
81
85
0
28 Aug 2019
Bayesian Inference for Large Scale Image Classification
Bayesian Inference for Large Scale Image Classification
Jonathan Heek
Nal Kalchbrenner
UQCVBDL
141
35
0
09 Aug 2019
Uncertainty Quantification in Deep Learning for Safer Neuroimage
  Enhancement
Uncertainty Quantification in Deep Learning for Safer Neuroimage Enhancement
Ryutaro Tanno
Daniel E. Worrall
Enrico Kaden
Aurobrata Ghosh
Francesco Grussu
A. Bizzi
S. Sotiropoulos
A. Criminisi
Daniel C. Alexander
MedImDiffM
104
33
0
31 Jul 2019
Stochastic gradient Markov chain Monte Carlo
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
81
139
0
16 Jul 2019
Confidence Calibration for Convolutional Neural Networks Using
  Structured Dropout
Confidence Calibration for Convolutional Neural Networks Using Structured Dropout
Zhilu Zhang
Adrian Dalca
M. Sabuncu
UQCVBDL
59
48
0
23 Jun 2019
Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond
Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond
Xuechen Li
Denny Wu
Lester W. Mackey
Murat A. Erdogdu
93
71
0
19 Jun 2019
Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer
  Vision
Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer Vision
Fredrik K. Gustafsson
Martin Danelljan
Thomas B. Schon
OODUQCVBDL
82
301
0
04 Jun 2019
Accelerating Langevin Sampling with Birth-death
Accelerating Langevin Sampling with Birth-death
Yulong Lu
Jianfeng Lu
J. Nolen
98
55
0
23 May 2019
Convolutional Poisson Gamma Belief Network
Convolutional Poisson Gamma Belief Network
Chaojie Wang
Bo Chen
Sucheng Xiao
Mingyuan Zhou
87
15
0
14 May 2019
On Stationary-Point Hitting Time and Ergodicity of Stochastic Gradient
  Langevin Dynamics
On Stationary-Point Hitting Time and Ergodicity of Stochastic Gradient Langevin Dynamics
Xi Chen
S. Du
Xin T. Tong
77
33
0
30 Apr 2019
Previous
1234
Next