ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.04696
  4. Cited By
A Complete Recipe for Stochastic Gradient MCMC
v1v2 (latest)

A Complete Recipe for Stochastic Gradient MCMC

15 June 2015
Yian Ma
Tianqi Chen
E. Fox
    BDLSyDa
ArXiv (abs)PDFHTML

Papers citing "A Complete Recipe for Stochastic Gradient MCMC"

50 / 165 papers shown
Title
Continuous Policy and Value Iteration for Stochastic Control Problems and Its Convergence
Qi Feng
Gu Wang
12
0
0
09 Jun 2025
Towards Identifiability of Interventional Stochastic Differential Equations
Towards Identifiability of Interventional Stochastic Differential Equations
Aaron Zweig
Zaikang Lin
Elham Azizi
David A. Knowles
73
1
0
21 May 2025
JaxSGMC: Modular stochastic gradient MCMC in JAX
JaxSGMC: Modular stochastic gradient MCMC in JAX
Stephan Thaler
Paul Fuchs
Ana Cukarska
Julija Zavadlav
BDL
215
2
0
16 May 2025
Hamiltonian Neural Networks for Robust Out-of-Time Credit Scoring
Hamiltonian Neural Networks for Robust Out-of-Time Credit Scoring
Javier Marín
228
0
0
13 Mar 2025
Bayesian Computation in Deep Learning
Bayesian Computation in Deep Learning
Wenlong Chen
Bolian Li
Ruqi Zhang
Yingzhen Li
BDL
114
0
0
25 Feb 2025
Muti-Fidelity Prediction and Uncertainty Quantification with Laplace Neural Operators for Parametric Partial Differential Equations
Muti-Fidelity Prediction and Uncertainty Quantification with Laplace Neural Operators for Parametric Partial Differential Equations
Haoyang Zheng
Guang Lin
AI4CE
91
0
0
01 Feb 2025
A noise-corrected Langevin algorithm and sampling by half-denoising
A noise-corrected Langevin algorithm and sampling by half-denoising
Aapo Hyvärinen
DiffM
100
1
0
08 Oct 2024
Scalable Bayesian Learning with posteriors
Scalable Bayesian Learning with posteriors
Samuel Duffield
Kaelan Donatella
Johnathan Chiu
Phoebe Klett
Daniel Simpson
BDLUQCV
178
2
0
31 May 2024
Power-law Dynamic arising from machine learning
Power-law Dynamic arising from machine learning
Wei Chen
Weitao Du
Zhi-Ming Ma
Qi Meng
23
0
0
16 Jun 2023
Fluctuation without dissipation: Microcanonical Langevin Monte Carlo
Fluctuation without dissipation: Microcanonical Langevin Monte Carlo
Jakob Robnik
U. Seljak
110
7
0
31 Mar 2023
Piecewise Deterministic Markov Processes for Bayesian Neural Networks
Piecewise Deterministic Markov Processes for Bayesian Neural Networks
Ethan Goan
Dimitri Perrin
Kerrie Mengersen
Clinton Fookes
53
0
0
17 Feb 2023
Transport map unadjusted Langevin algorithms: learning and discretizing
  perturbed samplers
Transport map unadjusted Langevin algorithms: learning and discretizing perturbed samplers
Benjamin J. Zhang
Youssef M. Marzouk
K. Spiliopoulos
81
0
0
14 Feb 2023
Langevin algorithms for very deep Neural Networks with application to
  image classification
Langevin algorithms for very deep Neural Networks with application to image classification
Pierre Bras
51
6
0
27 Dec 2022
Pigeonhole Stochastic Gradient Langevin Dynamics for Large Crossed Mixed
  Effects Models
Pigeonhole Stochastic Gradient Langevin Dynamics for Large Crossed Mixed Effects Models
Xinyu Zhang
Cheng Li
69
0
0
18 Dec 2022
ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images
ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images
Matthew D. Hoffman
T. Le
Pavel Sountsov
Christopher Suter
Ben Lee
Vikash K. Mansinghka
Rif A. Saurous
BDL
75
14
0
27 Oct 2022
Categorical SDEs with Simplex Diffusion
Categorical SDEs with Simplex Diffusion
Pierre Harvey Richemond
Sander Dieleman
Arnaud Doucet
DiffM
72
26
0
26 Oct 2022
Generalized Fiducial Inference on Differentiable Manifolds
Generalized Fiducial Inference on Differentiable Manifolds
Alexander C. Murph
Jan Hannig
Jonathan P. Williams
55
3
0
30 Sep 2022
A Particle-Based Algorithm for Distributional Optimization on
  \textit{Constrained Domains} via Variational Transport and Mirror Descent
A Particle-Based Algorithm for Distributional Optimization on \textit{Constrained Domains} via Variational Transport and Mirror Descent
Dai Hai Nguyen
Tetsuya Sakurai
90
2
0
01 Aug 2022
Enhanced gradient-based MCMC in discrete spaces
Enhanced gradient-based MCMC in discrete spaces
Benjamin Rhodes
Michael U. Gutmann
77
17
0
29 Jul 2022
Tuning Stochastic Gradient Algorithms for Statistical Inference via
  Large-Sample Asymptotics
Tuning Stochastic Gradient Algorithms for Statistical Inference via Large-Sample Asymptotics
Jeffrey Negrea
Jun Yang
Haoyue Feng
Daniel M. Roy
Jonathan H. Huggins
51
1
0
25 Jul 2022
Improving Task-free Continual Learning by Distributionally Robust Memory
  Evolution
Improving Task-free Continual Learning by Distributionally Robust Memory Evolution
Zhenyi Wang
Li Shen
Le Fang
Qiuling Suo
Tiehang Duan
Mingchen Gao
OOD
94
43
0
15 Jul 2022
Discrete Langevin Sampler via Wasserstein Gradient Flow
Discrete Langevin Sampler via Wasserstein Gradient Flow
Haoran Sun
H. Dai
Bo Dai
Haomin Zhou
Dale Schuurmans
BDL
90
24
0
29 Jun 2022
Low-Precision Stochastic Gradient Langevin Dynamics
Low-Precision Stochastic Gradient Langevin Dynamics
Ruqi Zhang
A. Wilson
Chris De Sa
BDL
58
14
0
20 Jun 2022
Bayesian Learning of Parameterised Quantum Circuits
Bayesian Learning of Parameterised Quantum Circuits
Samuel Duffield
Marcello Benedetti
Matthias Rosenkranz
60
11
0
15 Jun 2022
A stochastic Stein Variational Newton method
A stochastic Stein Variational Newton method
Alex Leviyev
Joshua Chen
Yifei Wang
Omar Ghattas
A. Zimmerman
52
9
0
19 Apr 2022
Distributed data analytics
Distributed data analytics
Richard Mortier
Hamed Haddadi
S. S. Rodríguez
Liang Wang
67
2
0
26 Mar 2022
Knowledge Removal in Sampling-based Bayesian Inference
Knowledge Removal in Sampling-based Bayesian Inference
Shaopeng Fu
Fengxiang He
Dacheng Tao
BDLMU
81
28
0
24 Mar 2022
Generative Flow Networks for Discrete Probabilistic Modeling
Generative Flow Networks for Discrete Probabilistic Modeling
Dinghuai Zhang
Nikolay Malkin
Ziqiang Liu
Alexandra Volokhova
Aaron Courville
Yoshua Bengio
80
110
0
03 Feb 2022
Online, Informative MCMC Thinning with Kernelized Stein Discrepancy
Online, Informative MCMC Thinning with Kernelized Stein Discrepancy
Cole Hawkins
Alec Koppel
Zheng Zhang
73
4
0
18 Jan 2022
Surrogate Likelihoods for Variational Annealed Importance Sampling
Surrogate Likelihoods for Variational Annealed Importance Sampling
M. Jankowiak
Du Phan
BDL
79
13
0
22 Dec 2021
DPVI: A Dynamic-Weight Particle-Based Variational Inference Framework
DPVI: A Dynamic-Weight Particle-Based Variational Inference Framework
Chao Zhang
Zhijian Li
Hui Qian
Xin Du
71
10
0
02 Dec 2021
A Mathematical Walkthrough and Discussion of the Free Energy Principle
A Mathematical Walkthrough and Discussion of the Free Energy Principle
Beren Millidge
A. Seth
Christopher L. Buckley
49
9
0
30 Aug 2021
Differentiable Annealed Importance Sampling and the Perils of Gradient
  Noise
Differentiable Annealed Importance Sampling and the Perils of Gradient Noise
Guodong Zhang
Kyle Hsu
Jianing Li
Chelsea Finn
Roger C. Grosse
85
40
0
21 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDLUQCVOOD
242
1,174
0
07 Jul 2021
Applications of the Free Energy Principle to Machine Learning and
  Neuroscience
Applications of the Free Energy Principle to Machine Learning and Neuroscience
Beren Millidge
DRL
112
8
0
30 Jun 2021
Sampling with Mirrored Stein Operators
Sampling with Mirrored Stein Operators
Jiaxin Shi
Chang-rui Liu
Lester W. Mackey
128
19
0
23 Jun 2021
Confidence-Aware Learning for Camouflaged Object Detection
Confidence-Aware Learning for Camouflaged Object Detection
Jiawei Liu
Jing Zhang
Nick Barnes
64
13
0
22 Jun 2021
Disentangling the Roles of Curation, Data-Augmentation and the Prior in
  the Cold Posterior Effect
Disentangling the Roles of Curation, Data-Augmentation and the Prior in the Cold Posterior Effect
Lorenzo Noci
Kevin Roth
Gregor Bachmann
Sebastian Nowozin
Thomas Hofmann
CML
77
26
0
11 Jun 2021
Efficient and Generalizable Tuning Strategies for Stochastic Gradient
  MCMC
Efficient and Generalizable Tuning Strategies for Stochastic Gradient MCMC
Jeremie Coullon
Leah F. South
Christopher Nemeth
76
12
0
27 May 2021
Quantifying Uncertainty in Deep Spatiotemporal Forecasting
Quantifying Uncertainty in Deep Spatiotemporal Forecasting
Dongxian Wu
Liyao (Mars) Gao
X. Xiong
Matteo Chinazzi
Alessandro Vespignani
Yi-An Ma
Rose Yu
AI4TS
89
71
0
25 May 2021
A Unifying and Canonical Description of Measure-Preserving Diffusions
A Unifying and Canonical Description of Measure-Preserving Diffusions
Alessandro Barp
So Takao
M. Betancourt
Alexis Arnaudon
Mark Girolami
72
17
0
06 May 2021
What Are Bayesian Neural Network Posteriors Really Like?
What Are Bayesian Neural Network Posteriors Really Like?
Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
A. Wilson
UQCVBDL
81
389
0
29 Apr 2021
Robust Generalised Bayesian Inference for Intractable Likelihoods
Robust Generalised Bayesian Inference for Intractable Likelihoods
Takuo Matsubara
Jeremias Knoblauch
François‐Xavier Briol
Chris J. Oates
UQCV
80
80
0
15 Apr 2021
Stein Variational Gradient Descent: many-particle and long-time
  asymptotics
Stein Variational Gradient Descent: many-particle and long-time asymptotics
Nikolas Nusken
D. M. Renger
99
22
0
25 Feb 2021
Variational Inference for Shrinkage Priors: The R package vir
Variational Inference for Shrinkage Priors: The R package vir
Suchit Mehrotra
A. Maity
BDL
38
1
0
17 Feb 2021
DeepGLEAM: A hybrid mechanistic and deep learning model for COVID-19
  forecasting
DeepGLEAM: A hybrid mechanistic and deep learning model for COVID-19 forecasting
Dongxian Wu
Liyao (Mars) Gao
X. Xiong
Matteo Chinazzi
Alessandro Vespignani
Yi-An Ma
Rose Yu
FedML
75
27
0
12 Feb 2021
Exact Langevin Dynamics with Stochastic Gradients
Exact Langevin Dynamics with Stochastic Gradients
Adrià Garriga-Alonso
Vincent Fortuin
BDL
72
33
0
02 Feb 2021
Bayesian Inference Forgetting
Bayesian Inference Forgetting
Shaopeng Fu
Fengxiang He
Yue Xu
Dacheng Tao
MU
78
12
0
16 Jan 2021
The shifted ODE method for underdamped Langevin MCMC
The shifted ODE method for underdamped Langevin MCMC
James Foster
Terry Lyons
Harald Oberhauser
91
16
0
10 Jan 2021
Unadjusted Langevin algorithm with multiplicative noise: Total variation
  and Wasserstein bounds
Unadjusted Langevin algorithm with multiplicative noise: Total variation and Wasserstein bounds
Gilles Pagès
Fabien Panloup
34
20
0
28 Dec 2020
1234
Next