Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1506.04696
Cited By
v1
v2 (latest)
A Complete Recipe for Stochastic Gradient MCMC
15 June 2015
Yian Ma
Tianqi Chen
E. Fox
BDL
SyDa
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A Complete Recipe for Stochastic Gradient MCMC"
50 / 165 papers shown
Title
Exponential Family Estimation via Adversarial Dynamics Embedding
Bo Dai
Ziqiang Liu
H. Dai
Niao He
Arthur Gretton
Le Song
Dale Schuurmans
82
53
0
27 Apr 2019
Probabilistic Permutation Synchronization using the Riemannian Structure of the Birkhoff Polytope
Tolga Birdal
Umut Simsekli
78
38
0
11 Apr 2019
Embarrassingly parallel MCMC using deep invertible transformations
Diego Mesquita
P. Blomstedt
Samuel Kaski
65
19
0
11 Mar 2019
On Transformations in Stochastic Gradient MCMC
Soma Yokoi
Takuma Otsuka
Issei Sato
58
1
0
07 Mar 2019
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
Ruqi Zhang
Chunyuan Li
Jianyi Zhang
Changyou Chen
A. Wilson
BDL
88
278
0
11 Feb 2019
Is There an Analog of Nesterov Acceleration for MCMC?
Yian Ma
Niladri Chatterji
Xiang Cheng
Nicolas Flammarion
Peter L. Bartlett
Michael I. Jordan
BDL
69
78
0
04 Feb 2019
Understanding MCMC Dynamics as Flows on the Wasserstein Space
Chang-Shu Liu
Jingwei Zhuo
Jun Zhu
106
22
0
01 Feb 2019
Non-Asymptotic Analysis of Fractional Langevin Monte Carlo for Non-Convex Optimization
T. H. Nguyen
Umut Simsekli
G. Richard
80
28
0
22 Jan 2019
The promises and pitfalls of Stochastic Gradient Langevin Dynamics
N. Brosse
Alain Durmus
Eric Moulines
80
78
0
25 Nov 2018
Reduced-order modeling with artificial neurons for gravitational-wave inference
A. J. Chua
C. Galley
M. Vallisneri
69
52
0
13 Nov 2018
Global Non-convex Optimization with Discretized Diffusions
Murat A. Erdogdu
Lester W. Mackey
Ohad Shamir
90
105
0
29 Oct 2018
Stochastic Gradient MCMC for State Space Models
Christopher Aicher
Yian Ma
N. Foti
E. Fox
64
22
0
22 Oct 2018
Deep learning with differential Gaussian process flows
Pashupati Hegde
Markus Heinonen
Harri Lähdesmäki
Samuel Kaski
BDL
90
42
0
09 Oct 2018
Deterministic Variational Inference for Robust Bayesian Neural Networks
Anqi Wu
Sebastian Nowozin
Edward Meeds
Richard Turner
José Miguel Hernández-Lobato
Alexander L. Gaunt
UQCV
AAML
BDL
100
16
0
09 Oct 2018
Deep convolutional Gaussian processes
Kenneth Blomqvist
Samuel Kaski
Markus Heinonen
BDL
86
61
0
06 Oct 2018
AutoLoss: Learning Discrete Schedules for Alternate Optimization
Haowen Xu
Huatian Zhang
Zhiting Hu
Xiaodan Liang
Ruslan Salakhutdinov
Eric Xing
78
30
0
04 Oct 2018
Global Convergence of Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Stochastic Optimization: Non-Asymptotic Performance Bounds and Momentum-Based Acceleration
Xuefeng Gao
Mert Gurbuzbalaban
Lingjiong Zhu
92
60
0
12 Sep 2018
Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory
Jianyi Zhang
Ruiyi Zhang
Lawrence Carin
Changyou Chen
133
46
0
05 Sep 2018
TherML: Thermodynamics of Machine Learning
Alexander A. Alemi
Ian S. Fischer
DRL
AI4CE
58
29
0
11 Jul 2018
Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions
Antoine Liutkus
Umut Simsekli
Szymon Majewski
Alain Durmus
Fabian-Robert Stöter
DiffM
98
122
0
21 Jun 2018
Meta-Learning for Stochastic Gradient MCMC
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
BDL
110
44
0
12 Jun 2018
Generative Modeling by Inclusive Neural Random Fields with Applications in Image Generation and Anomaly Detection
Yunfu Song
Zhijian Ou
DiffM
107
30
0
01 Jun 2018
Bayesian Pose Graph Optimization via Bingham Distributions and Tempered Geodesic MCMC
Tolga Birdal
Umut Simsekli
M. Eken
Slobodan Ilic
85
38
0
31 May 2018
Sharp convergence rates for Langevin dynamics in the nonconvex setting
Xiang Cheng
Niladri S. Chatterji
Yasin Abbasi-Yadkori
Peter L. Bartlett
Michael I. Jordan
71
167
0
04 May 2018
WHAI: Weibull Hybrid Autoencoding Inference for Deep Topic Modeling
Hao Zhang
Bo Chen
D. Guo
Mingyuan Zhou
BDL
80
118
0
04 Mar 2018
Mirrored Langevin Dynamics
Ya-Ping Hsieh
Ali Kavis
Paul Rolland
Volkan Cevher
89
85
0
27 Feb 2018
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
Niladri S. Chatterji
Nicolas Flammarion
Yian Ma
Peter L. Bartlett
Michael I. Jordan
86
87
0
15 Feb 2018
Stochastic Variance-Reduced Hamilton Monte Carlo Methods
Difan Zou
Pan Xu
Quanquan Gu
BDL
72
31
0
13 Feb 2018
On Connecting Stochastic Gradient MCMC and Differential Privacy
Bai Li
Changyou Chen
Hao Liu
Lawrence Carin
76
38
0
25 Dec 2017
Riemannian Stein Variational Gradient Descent for Bayesian Inference
Chang-rui Liu
Jun Zhu
65
67
0
30 Nov 2017
Stochastic gradient descent performs variational inference, converges to limit cycles for deep networks
Pratik Chaudhari
Stefano Soatto
MLT
104
304
0
30 Oct 2017
A Convergence Analysis for A Class of Practical Variance-Reduction Stochastic Gradient MCMC
Changyou Chen
Wenlin Wang
Yizhe Zhang
Qinliang Su
Lawrence Carin
92
28
0
04 Sep 2017
Differentially Private Regression for Discrete-Time Survival Analysis
T. Nguyen
S. Hui
48
12
0
24 Aug 2017
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Khue-Dung Dang
M. Quiroz
Robert Kohn
Minh-Ngoc Tran
M. Villani
120
62
0
02 Aug 2017
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization
Pan Xu
Jinghui Chen
Difan Zou
Quanquan Gu
90
205
0
20 Jul 2017
Underdamped Langevin MCMC: A non-asymptotic analysis
Xiang Cheng
Niladri S. Chatterji
Peter L. Bartlett
Michael I. Jordan
146
302
0
12 Jul 2017
Stochastic Gradient MCMC Methods for Hidden Markov Models
Yian Ma
N. Foti
E. Fox
BDL
43
32
0
14 Jun 2017
Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic Gradient Riemannian MCMC
Yulai Cong
Bo Chen
Hongwei Liu
Mingyuan Zhou
BDL
66
66
0
06 Jun 2017
Stochastic Gradient Monomial Gamma Sampler
Yizhe Zhang
Changyou Chen
Zhe Gan
Ricardo Henao
Lawrence Carin
BDL
74
11
0
05 Jun 2017
Geometry and Dynamics for Markov Chain Monte Carlo
Alessandro Barp
François‐Xavier Briol
A. Kennedy
Mark Girolami
AI4CE
78
31
0
08 May 2017
Using Perturbed Underdamped Langevin Dynamics to Efficiently Sample from Probability Distributions
A. B. Duncan
Nikolas Nusken
G. Pavliotis
61
41
0
29 Apr 2017
Stochastic Gradient Descent as Approximate Bayesian Inference
Stephan Mandt
Matthew D. Hoffman
David M. Blei
BDL
77
599
0
13 Apr 2017
Optimal Scaling of the MALA algorithm with Irreversible Proposals for Gaussian targets
M. Ottobre
Natesh S. Pillai
K. Spiliopoulos
41
9
0
06 Feb 2017
Nonreversible Langevin Samplers: Splitting Schemes, Analysis and Implementation
A. B. Duncan
G. Pavliotis
K. Zygalakis
63
25
0
16 Jan 2017
Asynchronous Stochastic Gradient MCMC with Elastic Coupling
Jost Tobias Springenberg
Aaron Klein
Stefan Falkner
Frank Hutter
BDL
39
1
0
02 Dec 2016
Piecewise Deterministic Markov Processes for Continuous-Time Monte Carlo
Paul Fearnhead
J. Bierkens
M. Pollock
Gareth O. Roberts
65
108
0
23 Nov 2016
Measuring Sample Quality with Diffusions
Jackson Gorham
Andrew B. Duncan
Sandra Jeanne Vollmer
Lester W. Mackey
148
117
0
21 Nov 2016
Entropy-SGD: Biasing Gradient Descent Into Wide Valleys
Pratik Chaudhari
A. Choromańska
Stefano Soatto
Yann LeCun
Carlo Baldassi
C. Borgs
J. Chayes
Levent Sagun
R. Zecchina
ODL
108
775
0
06 Nov 2016
Stochastic Gradient MCMC with Stale Gradients
Changyou Chen
Nan Ding
Chunyuan Li
Yizhe Zhang
Lawrence Carin
BDL
104
23
0
21 Oct 2016
An Efficient Minibatch Acceptance Test for Metropolis-Hastings
Daniel Seita
Xinlei Pan
Haoyu Chen
John F. Canny
81
44
0
19 Oct 2016
Previous
1
2
3
4
Next