ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.04696
  4. Cited By
A Complete Recipe for Stochastic Gradient MCMC
v1v2 (latest)

A Complete Recipe for Stochastic Gradient MCMC

15 June 2015
Yian Ma
Tianqi Chen
E. Fox
    BDLSyDa
ArXiv (abs)PDFHTML

Papers citing "A Complete Recipe for Stochastic Gradient MCMC"

50 / 165 papers shown
Title
Exponential Family Estimation via Adversarial Dynamics Embedding
Exponential Family Estimation via Adversarial Dynamics Embedding
Bo Dai
Ziqiang Liu
H. Dai
Niao He
Arthur Gretton
Le Song
Dale Schuurmans
82
53
0
27 Apr 2019
Probabilistic Permutation Synchronization using the Riemannian Structure
  of the Birkhoff Polytope
Probabilistic Permutation Synchronization using the Riemannian Structure of the Birkhoff Polytope
Tolga Birdal
Umut Simsekli
78
38
0
11 Apr 2019
Embarrassingly parallel MCMC using deep invertible transformations
Embarrassingly parallel MCMC using deep invertible transformations
Diego Mesquita
P. Blomstedt
Samuel Kaski
65
19
0
11 Mar 2019
On Transformations in Stochastic Gradient MCMC
On Transformations in Stochastic Gradient MCMC
Soma Yokoi
Takuma Otsuka
Issei Sato
58
1
0
07 Mar 2019
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
Ruqi Zhang
Chunyuan Li
Jianyi Zhang
Changyou Chen
A. Wilson
BDL
88
278
0
11 Feb 2019
Is There an Analog of Nesterov Acceleration for MCMC?
Is There an Analog of Nesterov Acceleration for MCMC?
Yian Ma
Niladri Chatterji
Xiang Cheng
Nicolas Flammarion
Peter L. Bartlett
Michael I. Jordan
BDL
69
78
0
04 Feb 2019
Understanding MCMC Dynamics as Flows on the Wasserstein Space
Understanding MCMC Dynamics as Flows on the Wasserstein Space
Chang-Shu Liu
Jingwei Zhuo
Jun Zhu
106
22
0
01 Feb 2019
Non-Asymptotic Analysis of Fractional Langevin Monte Carlo for
  Non-Convex Optimization
Non-Asymptotic Analysis of Fractional Langevin Monte Carlo for Non-Convex Optimization
T. H. Nguyen
Umut Simsekli
G. Richard
80
28
0
22 Jan 2019
The promises and pitfalls of Stochastic Gradient Langevin Dynamics
The promises and pitfalls of Stochastic Gradient Langevin Dynamics
N. Brosse
Alain Durmus
Eric Moulines
80
78
0
25 Nov 2018
Reduced-order modeling with artificial neurons for gravitational-wave
  inference
Reduced-order modeling with artificial neurons for gravitational-wave inference
A. J. Chua
C. Galley
M. Vallisneri
69
52
0
13 Nov 2018
Global Non-convex Optimization with Discretized Diffusions
Global Non-convex Optimization with Discretized Diffusions
Murat A. Erdogdu
Lester W. Mackey
Ohad Shamir
90
105
0
29 Oct 2018
Stochastic Gradient MCMC for State Space Models
Stochastic Gradient MCMC for State Space Models
Christopher Aicher
Yian Ma
N. Foti
E. Fox
64
22
0
22 Oct 2018
Deep learning with differential Gaussian process flows
Deep learning with differential Gaussian process flows
Pashupati Hegde
Markus Heinonen
Harri Lähdesmäki
Samuel Kaski
BDL
90
42
0
09 Oct 2018
Deterministic Variational Inference for Robust Bayesian Neural Networks
Deterministic Variational Inference for Robust Bayesian Neural Networks
Anqi Wu
Sebastian Nowozin
Edward Meeds
Richard Turner
José Miguel Hernández-Lobato
Alexander L. Gaunt
UQCVAAMLBDL
100
16
0
09 Oct 2018
Deep convolutional Gaussian processes
Deep convolutional Gaussian processes
Kenneth Blomqvist
Samuel Kaski
Markus Heinonen
BDL
86
61
0
06 Oct 2018
AutoLoss: Learning Discrete Schedules for Alternate Optimization
AutoLoss: Learning Discrete Schedules for Alternate Optimization
Haowen Xu
Huatian Zhang
Zhiting Hu
Xiaodan Liang
Ruslan Salakhutdinov
Eric Xing
78
30
0
04 Oct 2018
Global Convergence of Stochastic Gradient Hamiltonian Monte Carlo for
  Non-Convex Stochastic Optimization: Non-Asymptotic Performance Bounds and
  Momentum-Based Acceleration
Global Convergence of Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Stochastic Optimization: Non-Asymptotic Performance Bounds and Momentum-Based Acceleration
Xuefeng Gao
Mert Gurbuzbalaban
Lingjiong Zhu
92
60
0
12 Sep 2018
Stochastic Particle-Optimization Sampling and the Non-Asymptotic
  Convergence Theory
Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory
Jianyi Zhang
Ruiyi Zhang
Lawrence Carin
Changyou Chen
133
46
0
05 Sep 2018
TherML: Thermodynamics of Machine Learning
TherML: Thermodynamics of Machine Learning
Alexander A. Alemi
Ian S. Fischer
DRLAI4CE
58
29
0
11 Jul 2018
Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal
  Transport and Diffusions
Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions
Antoine Liutkus
Umut Simsekli
Szymon Majewski
Alain Durmus
Fabian-Robert Stöter
DiffM
98
122
0
21 Jun 2018
Meta-Learning for Stochastic Gradient MCMC
Meta-Learning for Stochastic Gradient MCMC
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
BDL
110
44
0
12 Jun 2018
Generative Modeling by Inclusive Neural Random Fields with Applications
  in Image Generation and Anomaly Detection
Generative Modeling by Inclusive Neural Random Fields with Applications in Image Generation and Anomaly Detection
Yunfu Song
Zhijian Ou
DiffM
107
30
0
01 Jun 2018
Bayesian Pose Graph Optimization via Bingham Distributions and Tempered
  Geodesic MCMC
Bayesian Pose Graph Optimization via Bingham Distributions and Tempered Geodesic MCMC
Tolga Birdal
Umut Simsekli
M. Eken
Slobodan Ilic
85
38
0
31 May 2018
Sharp convergence rates for Langevin dynamics in the nonconvex setting
Sharp convergence rates for Langevin dynamics in the nonconvex setting
Xiang Cheng
Niladri S. Chatterji
Yasin Abbasi-Yadkori
Peter L. Bartlett
Michael I. Jordan
71
167
0
04 May 2018
WHAI: Weibull Hybrid Autoencoding Inference for Deep Topic Modeling
WHAI: Weibull Hybrid Autoencoding Inference for Deep Topic Modeling
Hao Zhang
Bo Chen
D. Guo
Mingyuan Zhou
BDL
80
118
0
04 Mar 2018
Mirrored Langevin Dynamics
Mirrored Langevin Dynamics
Ya-Ping Hsieh
Ali Kavis
Paul Rolland
Volkan Cevher
89
85
0
27 Feb 2018
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
Niladri S. Chatterji
Nicolas Flammarion
Yian Ma
Peter L. Bartlett
Michael I. Jordan
86
87
0
15 Feb 2018
Stochastic Variance-Reduced Hamilton Monte Carlo Methods
Stochastic Variance-Reduced Hamilton Monte Carlo Methods
Difan Zou
Pan Xu
Quanquan Gu
BDL
72
31
0
13 Feb 2018
On Connecting Stochastic Gradient MCMC and Differential Privacy
On Connecting Stochastic Gradient MCMC and Differential Privacy
Bai Li
Changyou Chen
Hao Liu
Lawrence Carin
76
38
0
25 Dec 2017
Riemannian Stein Variational Gradient Descent for Bayesian Inference
Riemannian Stein Variational Gradient Descent for Bayesian Inference
Chang-rui Liu
Jun Zhu
65
67
0
30 Nov 2017
Stochastic gradient descent performs variational inference, converges to
  limit cycles for deep networks
Stochastic gradient descent performs variational inference, converges to limit cycles for deep networks
Pratik Chaudhari
Stefano Soatto
MLT
104
304
0
30 Oct 2017
A Convergence Analysis for A Class of Practical Variance-Reduction
  Stochastic Gradient MCMC
A Convergence Analysis for A Class of Practical Variance-Reduction Stochastic Gradient MCMC
Changyou Chen
Wenlin Wang
Yizhe Zhang
Qinliang Su
Lawrence Carin
92
28
0
04 Sep 2017
Differentially Private Regression for Discrete-Time Survival Analysis
Differentially Private Regression for Discrete-Time Survival Analysis
T. Nguyen
S. Hui
48
12
0
24 Aug 2017
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Khue-Dung Dang
M. Quiroz
Robert Kohn
Minh-Ngoc Tran
M. Villani
120
62
0
02 Aug 2017
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex
  Optimization
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization
Pan Xu
Jinghui Chen
Difan Zou
Quanquan Gu
90
205
0
20 Jul 2017
Underdamped Langevin MCMC: A non-asymptotic analysis
Underdamped Langevin MCMC: A non-asymptotic analysis
Xiang Cheng
Niladri S. Chatterji
Peter L. Bartlett
Michael I. Jordan
146
302
0
12 Jul 2017
Stochastic Gradient MCMC Methods for Hidden Markov Models
Stochastic Gradient MCMC Methods for Hidden Markov Models
Yian Ma
N. Foti
E. Fox
BDL
43
32
0
14 Jun 2017
Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic
  Gradient Riemannian MCMC
Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic Gradient Riemannian MCMC
Yulai Cong
Bo Chen
Hongwei Liu
Mingyuan Zhou
BDL
66
66
0
06 Jun 2017
Stochastic Gradient Monomial Gamma Sampler
Stochastic Gradient Monomial Gamma Sampler
Yizhe Zhang
Changyou Chen
Zhe Gan
Ricardo Henao
Lawrence Carin
BDL
74
11
0
05 Jun 2017
Geometry and Dynamics for Markov Chain Monte Carlo
Geometry and Dynamics for Markov Chain Monte Carlo
Alessandro Barp
François‐Xavier Briol
A. Kennedy
Mark Girolami
AI4CE
78
31
0
08 May 2017
Using Perturbed Underdamped Langevin Dynamics to Efficiently Sample from
  Probability Distributions
Using Perturbed Underdamped Langevin Dynamics to Efficiently Sample from Probability Distributions
A. B. Duncan
Nikolas Nusken
G. Pavliotis
61
41
0
29 Apr 2017
Stochastic Gradient Descent as Approximate Bayesian Inference
Stochastic Gradient Descent as Approximate Bayesian Inference
Stephan Mandt
Matthew D. Hoffman
David M. Blei
BDL
77
599
0
13 Apr 2017
Optimal Scaling of the MALA algorithm with Irreversible Proposals for
  Gaussian targets
Optimal Scaling of the MALA algorithm with Irreversible Proposals for Gaussian targets
M. Ottobre
Natesh S. Pillai
K. Spiliopoulos
41
9
0
06 Feb 2017
Nonreversible Langevin Samplers: Splitting Schemes, Analysis and
  Implementation
Nonreversible Langevin Samplers: Splitting Schemes, Analysis and Implementation
A. B. Duncan
G. Pavliotis
K. Zygalakis
63
25
0
16 Jan 2017
Asynchronous Stochastic Gradient MCMC with Elastic Coupling
Asynchronous Stochastic Gradient MCMC with Elastic Coupling
Jost Tobias Springenberg
Aaron Klein
Stefan Falkner
Frank Hutter
BDL
39
1
0
02 Dec 2016
Piecewise Deterministic Markov Processes for Continuous-Time Monte Carlo
Piecewise Deterministic Markov Processes for Continuous-Time Monte Carlo
Paul Fearnhead
J. Bierkens
M. Pollock
Gareth O. Roberts
65
108
0
23 Nov 2016
Measuring Sample Quality with Diffusions
Measuring Sample Quality with Diffusions
Jackson Gorham
Andrew B. Duncan
Sandra Jeanne Vollmer
Lester W. Mackey
148
117
0
21 Nov 2016
Entropy-SGD: Biasing Gradient Descent Into Wide Valleys
Entropy-SGD: Biasing Gradient Descent Into Wide Valleys
Pratik Chaudhari
A. Choromańska
Stefano Soatto
Yann LeCun
Carlo Baldassi
C. Borgs
J. Chayes
Levent Sagun
R. Zecchina
ODL
108
775
0
06 Nov 2016
Stochastic Gradient MCMC with Stale Gradients
Stochastic Gradient MCMC with Stale Gradients
Changyou Chen
Nan Ding
Chunyuan Li
Yizhe Zhang
Lawrence Carin
BDL
104
23
0
21 Oct 2016
An Efficient Minibatch Acceptance Test for Metropolis-Hastings
An Efficient Minibatch Acceptance Test for Metropolis-Hastings
Daniel Seita
Xinlei Pan
Haoyu Chen
John F. Canny
81
44
0
19 Oct 2016
Previous
1234
Next