ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.00519
  4. Cited By
Importance Weighted Autoencoders
v1v2v3v4 (latest)

Importance Weighted Autoencoders

International Conference on Learning Representations (ICLR), 2015
1 September 2015
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
    BDL
ArXiv (abs)PDFHTML

Papers citing "Importance Weighted Autoencoders"

50 / 815 papers shown
Title
Semi-Unsupervised Learning: Clustering and Classifying using
  Ultra-Sparse Labels
Semi-Unsupervised Learning: Clustering and Classifying using Ultra-Sparse Labels
M. Willetts
Stephen J. Roberts
Christopher C Holmes
135
5
0
24 Jan 2019
Continuous Hierarchical Representations with Poincaré Variational
  Auto-Encoders
Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders
Emile Mathieu
Charline Le Lan
Chris J. Maddison
Ryota Tomioka
Yee Whye Teh
BDLDRL
260
192
0
17 Jan 2019
Lagging Inference Networks and Posterior Collapse in Variational
  Autoencoders
Lagging Inference Networks and Posterior Collapse in Variational Autoencoders
Junxian He
Daniel M. Spokoyny
Graham Neubig
Taylor Berg-Kirkpatrick
BDLDRL
206
285
0
16 Jan 2019
Conditional deep surrogate models for stochastic, high-dimensional, and
  multi-fidelity systems
Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems
Jianlong Wu
P. Perdikaris
SyDaBDLAI4CE
104
62
0
15 Jan 2019
Undirected Graphical Models as Approximate Posteriors
Undirected Graphical Models as Approximate Posteriors
Arash Vahdat
Evgeny Andriyash
W. Macready
174
2
0
11 Jan 2019
Dirichlet Variational Autoencoder
Dirichlet Variational Autoencoder
Weonyoung Joo
Wonsung Lee
Sungrae Park
Il-Chul Moon
BDLDRL
183
113
0
09 Jan 2019
MAE: Mutual Posterior-Divergence Regularization for Variational
  AutoEncoders
MAE: Mutual Posterior-Divergence Regularization for Variational AutoEncoders
Xuezhe Ma
Chunting Zhou
Eduard H. Hovy
DRL
145
40
0
06 Jan 2019
Learning Nonlinear State Space Models with Hamiltonian Sequential Monte
  Carlo Sampler
Learning Nonlinear State Space Models with Hamiltonian Sequential Monte Carlo Sampler
Duo Xu
138
2
0
03 Jan 2019
Fast Approximate Geodesics for Deep Generative Models
Fast Approximate Geodesics for Deep Generative Models
Nutan Chen
Francesco Ferroni
Alexej Klushyn
A. Paraschos
Justin Bayer
Patrick van der Smagt
DRL
166
31
0
19 Dec 2018
A Factorial Mixture Prior for Compositional Deep Generative Models
A Factorial Mixture Prior for Compositional Deep Generative Models
Ulrich Paquet
Sumedh Ghaisas
O. Tieleman
CoGe
132
1
0
18 Dec 2018
A Novel Variational Autoencoder with Applications to Generative
  Modelling, Classification, and Ordinal Regression
A Novel Variational Autoencoder with Applications to Generative Modelling, Classification, and Ordinal Regression
J. Jaskari
Jyri J. Kivinen
BDLDRL
118
6
0
18 Dec 2018
Sparsity in Variational Autoencoders
Sparsity in Variational Autoencoders
Andrea Asperti
BDLDRL
157
12
0
18 Dec 2018
A Tutorial on Deep Latent Variable Models of Natural Language
A Tutorial on Deep Latent Variable Models of Natural Language
Yoon Kim
Sam Wiseman
Alexander M. Rush
BDLVLM
214
44
0
17 Dec 2018
What is the Effect of Importance Weighting in Deep Learning?
What is the Effect of Importance Weighting in Deep Learning?
Jonathon Byrd
Zachary Chase Lipton
409
504
0
08 Dec 2018
Back to square one: probabilistic trajectory forecasting without bells
  and whistles
Back to square one: probabilistic trajectory forecasting without bells and whistles
Ehsan Pajouheshgar
Christoph H. Lampert
73
9
0
07 Dec 2018
Embedding-reparameterization procedure for manifold-valued latent
  variables in generative models
Embedding-reparameterization procedure for manifold-valued latent variables in generative models
Eugene Golikov
M. Kretov
DRL
93
0
0
06 Dec 2018
$β$-VAEs can retain label information even at high compression
βββ-VAEs can retain label information even at high compression
Emily Fertig
Aryan Arbabi
Alexander A. Alemi
98
6
0
06 Dec 2018
MIWAE: Deep Generative Modelling and Imputation of Incomplete Data
MIWAE: Deep Generative Modelling and Imputation of Incomplete Data
Pierre-Alexandre Mattei
J. Frellsen
SyDa
126
48
0
06 Dec 2018
Neural Joint Source-Channel Coding
Neural Joint Source-Channel Coding
Kristy Choi
Kedar Tatwawadi
Aditya Grover
Tsachy Weissman
Stefano Ermon
210
40
0
19 Nov 2018
Deep Knockoffs
Deep KnockoffsJournal of the American Statistical Association (JASA), 2018
Yaniv Romano
Matteo Sesia
Emmanuel J. Candès
BDL
206
155
0
16 Nov 2018
Multi-Source Neural Variational Inference
Multi-Source Neural Variational Inference
Richard Kurle
Stephan Günnemann
Patrick van der Smagt
BDLSSLDRL
175
27
0
11 Nov 2018
Bayesian variational inference for exponential random graph models
Bayesian variational inference for exponential random graph models
Linda S. L. Tan
Nial Friel
246
20
0
10 Nov 2018
Deep Generative Model with Beta Bernoulli Process for Modeling and
  Learning Confounding Factors
Deep Generative Model with Beta Bernoulli Process for Modeling and Learning Confounding Factors
P. Gyawali
Cameron Knight
S. Ghimire
B. Horácek
J. Sapp
Linwei Wang
BDLDRL
134
1
0
31 Oct 2018
Semi-unsupervised Learning of Human Activity using Deep Generative
  Models
Semi-unsupervised Learning of Human Activity using Deep Generative Models
M. Willetts
Aiden Doherty
Stephen J. Roberts
Chris Holmes
116
3
0
29 Oct 2018
Variational Inference with Tail-adaptive f-Divergence
Variational Inference with Tail-adaptive f-Divergence
Dilin Wang
Hao Liu
Qiang Liu
201
56
0
29 Oct 2018
The Variational Deficiency Bottleneck
The Variational Deficiency Bottleneck
P. Banerjee
Guido Montúfar
259
7
0
27 Oct 2018
Resampled Priors for Variational Autoencoders
Resampled Priors for Variational Autoencoders
Matthias Bauer
A. Mnih
BDLDRL
184
118
0
26 Oct 2018
Efficient Learning of Restricted Boltzmann Machines Using Covariance
  Estimates
Efficient Learning of Restricted Boltzmann Machines Using Covariance Estimates
V. Upadhya
P. Sastry
165
2
0
25 Oct 2018
The Deep Weight Prior
The Deep Weight Prior
Andrei Atanov
Arsenii Ashukha
Kirill Struminsky
Dmitry Vetrov
Max Welling
BDL
189
37
0
16 Oct 2018
The LORACs prior for VAEs: Letting the Trees Speak for the Data
The LORACs prior for VAEs: Letting the Trees Speak for the Data
Sharad Vikram
Matthew D. Hoffman
Matthew J. Johnson
CMLBDL
139
15
0
16 Oct 2018
Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives
Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives
George Tucker
Dieterich Lawson
S. Gu
Chris J. Maddison
BDL
197
110
0
09 Oct 2018
Doubly Semi-Implicit Variational Inference
Doubly Semi-Implicit Variational Inference
Dmitry Molchanov
V. Kharitonov
Artem Sobolev
Dmitry Vetrov
BDL
228
40
0
05 Oct 2018
Differentiable Antithetic Sampling for Variance Reduction in Stochastic
  Variational Inference
Differentiable Antithetic Sampling for Variance Reduction in Stochastic Variational Inference
Mike Wu
Noah D. Goodman
Stefano Ermon
BDLDRL
186
15
0
05 Oct 2018
Taming VAEs
Taming VAEs
Danilo Jimenez Rezende
Fabio Viola
DRLCML
199
191
0
01 Oct 2018
An Introduction to Probabilistic Programming
An Introduction to Probabilistic Programming
Jan-Willem van de Meent
Brooks Paige
Hongseok Yang
Frank Wood
GP
228
212
0
27 Sep 2018
NEXUS Network: Connecting the Preceding and the Following in Dialogue
  Generation
NEXUS Network: Connecting the Preceding and the Following in Dialogue GenerationConference on Empirical Methods in Natural Language Processing (EMNLP), 2018
Hui Su
Xiaoyu Shen
Wenjie Li
Dietrich Klakow
195
30
0
27 Sep 2018
Implicit Maximum Likelihood Estimation
Implicit Maximum Likelihood Estimation
Ke Li
Jitendra Malik
127
100
0
24 Sep 2018
InfoSSM: Interpretable Unsupervised Learning of Nonparametric
  State-Space Model for Multi-modal Dynamics
InfoSSM: Interpretable Unsupervised Learning of Nonparametric State-Space Model for Multi-modal Dynamics
Young-Jin Park
Han-Lim Choi
73
0
0
19 Sep 2018
Variational Autoencoder with Implicit Optimal Priors
Variational Autoencoder with Implicit Optimal Priors
Hiroshi Takahashi
Tomoharu Iwata
Yuki Yamanaka
Masanori Yamada
Satoshi Yagi
DRL
194
67
0
14 Sep 2018
Constrained Generation of Semantically Valid Graphs via Regularizing
  Variational Autoencoders
Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders
Tengfei Ma
Jie Chen
Cao Xiao
276
219
0
07 Sep 2018
VOS: a Method for Variational Oversampling of Imbalanced Data
VOS: a Method for Variational Oversampling of Imbalanced Data
V. Fajardo
David Findlay
Roshanak Houmanfar
Charu Jaiswal
Jiaxi Liang
Honglei Xie
78
9
0
07 Sep 2018
Improving Explorability in Variational Inference with Annealed
  Variational Objectives
Improving Explorability in Variational Inference with Annealed Variational Objectives
Chin-Wei Huang
Shawn Tan
Alexandre Lacoste
Aaron Courville
DRL
182
49
0
06 Sep 2018
Importance Weighting and Variational Inference
Importance Weighting and Variational Inference
Justin Domke
Daniel Sheldon
235
109
0
27 Aug 2018
A Fourier View of REINFORCE
A Fourier View of REINFORCE
Adeel Pervez
94
0
0
12 Aug 2018
Active Learning based on Data Uncertainty and Model Sensitivity
Active Learning based on Data Uncertainty and Model Sensitivity
Nutan Chen
Alexej Klushyn
A. Paraschos
Djalel Benbouzid
Patrick van der Smagt
125
17
0
06 Aug 2018
A Review of Learning with Deep Generative Models from Perspective of
  Graphical Modeling
A Review of Learning with Deep Generative Models from Perspective of Graphical Modeling
Zhijian Ou
225
15
0
05 Aug 2018
Semi-supervised Deep Generative Modelling of Incomplete Multi-Modality
  Emotional Data
Semi-supervised Deep Generative Modelling of Incomplete Multi-Modality Emotional Data
Changde Du
Changying Du
Hao Wang
Jinpeng Li
Wei-Long Zheng
Bao-Liang Lu
Huiguang He
157
78
0
27 Jul 2018
On the Information Theoretic Distance Measures and Bidirectional
  Helmholtz Machines
On the Information Theoretic Distance Measures and Bidirectional Helmholtz Machines
Mahdi Azarafrooz
Xuan Zhao
Sepehr Akhavan Masouleh
60
0
0
16 Jul 2018
Deep Generative Model using Unregularized Score for Anomaly Detection
  with Heterogeneous Complexity
Deep Generative Model using Unregularized Score for Anomaly Detection with Heterogeneous ComplexityIEEE Transactions on Cybernetics (IEEE Trans. Cybern.), 2018
Takashi Matsubara
Kenta Hama
Ryosuke Tachibana
K. Uehara
196
32
0
16 Jul 2018
Avoiding Latent Variable Collapse With Generative Skip Models
Avoiding Latent Variable Collapse With Generative Skip Models
Adji Bousso Dieng
Yoon Kim
Alexander M. Rush
David M. Blei
DRL
188
183
0
12 Jul 2018
Previous
123...121314151617
Next