ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.00519
  4. Cited By
Importance Weighted Autoencoders
v1v2v3v4 (latest)

Importance Weighted Autoencoders

International Conference on Learning Representations (ICLR), 2015
1 September 2015
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
    BDL
ArXiv (abs)PDFHTML

Papers citing "Importance Weighted Autoencoders"

50 / 817 papers shown
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Variational Autoencoders and Nonlinear ICA: A Unifying FrameworkInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Ilyes Khemakhem
Diederik P. Kingma
Ricardo Pio Monti
Aapo Hyvarinen
OOD
467
685
0
10 Jul 2019
Mixed-Variable Bayesian Optimization
Mixed-Variable Bayesian OptimizationInternational Joint Conference on Artificial Intelligence (IJCAI), 2020
Erik A. Daxberger
Anastasia Makarova
M. Turchetta
Andreas Krause
346
59
0
02 Jul 2019
Augmenting and Tuning Knowledge Graph Embeddings
Augmenting and Tuning Knowledge Graph EmbeddingsConference on Uncertainty in Artificial Intelligence (UAI), 2019
Kushagra Pandey
Farnood Salehi
Stephan Mandt
157
8
0
01 Jul 2019
The Thermodynamic Variational Objective
The Thermodynamic Variational ObjectiveNeural Information Processing Systems (NeurIPS), 2019
Vaden Masrani
T. Le
Frank Wood
704
50
0
28 Jun 2019
Teaching deep neural networks to localize single molecules for
  super-resolution microscopy
Teaching deep neural networks to localize single molecules for super-resolution microscopy
Artur Speiser
Lucas-Raphael Müller
Ulf Matti
Christopher J. Obara
Wesley R. Legant
Jonas Ries
Jakob H. Macke
Srinivas C. Turaga
114
17
0
27 Jun 2019
Divide and Couple: Using Monte Carlo Variational Objectives for
  Posterior Approximation
Divide and Couple: Using Monte Carlo Variational Objectives for Posterior ApproximationNeural Information Processing Systems (NeurIPS), 2019
Justin Domke
Daniel Sheldon
321
18
0
24 Jun 2019
Bias Correction of Learned Generative Models using Likelihood-Free
  Importance Weighting
Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting
Aditya Grover
Jiaming Song
Alekh Agarwal
Kenneth Tran
Ashish Kapoor
Eric Horvitz
Stefano Ermon
201
130
0
23 Jun 2019
Neural Topographic Factor Analysis for fMRI Data
Neural Topographic Factor Analysis for fMRI DataNeural Information Processing Systems (NeurIPS), 2019
Eli Sennesh
Zulqarnain Khan
Yiyu Wang
Jennifer Dy
Ajay B. Satpute
J. B. Hutchinson
Jan-Willem van de Meent
137
4
0
21 Jun 2019
Data Interpolating Prediction: Alternative Interpretation of Mixup
Data Interpolating Prediction: Alternative Interpretation of Mixup
Takuya Shimada
Shoichiro Yamaguchi
K. Hayashi
Sosuke Kobayashi
140
7
0
20 Jun 2019
Amortized Bethe Free Energy Minimization for Learning MRFs
Amortized Bethe Free Energy Minimization for Learning MRFsNeural Information Processing Systems (NeurIPS), 2019
Sam Wiseman
Yoon Kim
TPMDRL
177
11
0
14 Jun 2019
Reweighted Expectation Maximization
Reweighted Expectation Maximization
Adji Bousso Dieng
John Paisley
VLMDRL
174
17
0
13 Jun 2019
Learning Deep Generative Models with Annealed Importance Sampling
Learning Deep Generative Models with Annealed Importance Sampling
Xinqiang Ding
David J. Freedman
VLMBDLGAN
202
11
0
12 Jun 2019
Explicit Disentanglement of Appearance and Perspective in Generative
  Models
Explicit Disentanglement of Appearance and Perspective in Generative ModelsNeural Information Processing Systems (NeurIPS), 2019
N. Detlefsen
Søren Hauberg
CoGeDRL
130
57
0
11 Jun 2019
Neural Spline Flows
Neural Spline FlowsNeural Information Processing Systems (NeurIPS), 2019
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
1.0K
897
0
10 Jun 2019
Note on the bias and variance of variational inference
Note on the bias and variance of variational inference
Chin-Wei Huang
Aaron Courville
155
5
0
09 Jun 2019
Importance Weighted Adversarial Variational Autoencoders for Spike
  Inference from Calcium Imaging Data
Importance Weighted Adversarial Variational Autoencoders for Spike Inference from Calcium Imaging Data
Daniel Jiwoong Im
Sridhama Prakhya
Jinyao Yan
Srinivas C. Turaga
K. Branson
BDL
125
2
0
07 Jun 2019
An Introduction to Variational Autoencoders
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDLSSLDRL
742
2,796
0
06 Jun 2019
Improving VAEs' Robustness to Adversarial Attack
Improving VAEs' Robustness to Adversarial Attack
M. Willetts
A. Camuto
Tom Rainforth
Stephen J. Roberts
Chris Holmes
DRLAAML
494
5
0
01 Jun 2019
On the Necessity and Effectiveness of Learning the Prior of Variational
  Auto-Encoder
On the Necessity and Effectiveness of Learning the Prior of Variational Auto-Encoder
Haowen Xu
Wenxiao Chen
Jinlin Lai
Zhihan Li
Youjian Zhao
Dan Pei
DRLBDL
166
17
0
31 May 2019
Particle Filter Recurrent Neural Networks
Particle Filter Recurrent Neural NetworksAAAI Conference on Artificial Intelligence (AAAI), 2019
Xiao Ma
Peter Karkus
David Hsu
Wee Sun Lee
295
91
0
30 May 2019
Efficient Amortised Bayesian Inference for Hierarchical and Nonlinear
  Dynamical Systems
Efficient Amortised Bayesian Inference for Hierarchical and Nonlinear Dynamical SystemsInternational Conference on Machine Learning (ICML), 2019
Geoffrey Roeder
Paul K. Grant
Andrew Phillips
Neil Dalchau
Edward Meeds
287
24
0
28 May 2019
Practical and Consistent Estimation of f-Divergences
Practical and Consistent Estimation of f-DivergencesNeural Information Processing Systems (NeurIPS), 2019
Paul Kishan Rubenstein
Olivier Bousquet
Josip Djolonga
C. Riquelme
Ilya O. Tolstikhin
206
48
0
27 May 2019
MaxEntropy Pursuit Variational Inference
MaxEntropy Pursuit Variational InferenceInternational Symposium on Neural Networks (ISNN), 2019
Evgenii Egorov
Kirill Neklyudov
R. Kostoev
Evgeny Burnaev
BDL
133
3
0
20 May 2019
Deep Gaussian Processes with Importance-Weighted Variational Inference
Deep Gaussian Processes with Importance-Weighted Variational InferenceInternational Conference on Machine Learning (ICML), 2019
Hugh Salimbeni
Vincent Dutordoir
J. Hensman
M. Deisenroth
BDL
237
44
0
14 May 2019
Correlated Variational Auto-Encoders
Correlated Variational Auto-EncodersInternational Conference on Machine Learning (ICML), 2019
Da Tang
Dawen Liang
Tony Jebara
Nicholas Ruozzi
CMLGNN
270
21
0
14 May 2019
Learning Hierarchical Priors in VAEs
Learning Hierarchical Priors in VAEsNeural Information Processing Systems (NeurIPS), 2019
Alexej Klushyn
Nutan Chen
Richard Kurle
Botond Cseke
Patrick van der Smagt
BDLCMLDRL
377
106
0
13 May 2019
Hierarchical Importance Weighted Autoencoders
Hierarchical Importance Weighted AutoencodersInternational Conference on Machine Learning (ICML), 2019
Chin-Wei Huang
Kris Sankaran
Eeshan Gunesh Dhekane
Alexandre Lacoste
Aaron Courville
BDL
153
16
0
13 May 2019
Boosting Generative Models by Leveraging Cascaded Meta-Models
Boosting Generative Models by Leveraging Cascaded Meta-Models
Fan Bao
Hang Su
Jun Zhu
95
1
0
11 May 2019
Importance Weighted Hierarchical Variational Inference
Importance Weighted Hierarchical Variational InferenceNeural Information Processing Systems (NeurIPS), 2019
Artem Sobolev
Dmitry Vetrov
BDL
157
32
0
08 May 2019
Conditionally structured variational Gaussian approximation with
  importance weights
Conditionally structured variational Gaussian approximation with importance weights
Linda S. L. Tan
Aishwarya Bhaskaran
David J. Nott
239
13
0
21 Apr 2019
Effective Estimation of Deep Generative Language Models
Effective Estimation of Deep Generative Language Models
Tom Pelsmaeker
Wilker Aziz
BDL
249
28
0
17 Apr 2019
Exact Rate-Distortion in Autoencoders via Echo Noise
Exact Rate-Distortion in Autoencoders via Echo Noise
Rob Brekelmans
Daniel Moyer
Aram Galstyan
Greg Ver Steeg
182
17
0
15 Apr 2019
Information Theoretic Lower Bounds on Negative Log Likelihood
Information Theoretic Lower Bounds on Negative Log Likelihood
Luis A. Lastras
110
8
0
12 Apr 2019
Supervised Anomaly Detection based on Deep Autoregressive Density
  Estimators
Supervised Anomaly Detection based on Deep Autoregressive Density Estimators
Tomoharu Iwata
Yuki Yamanaka
127
13
0
12 Apr 2019
Autoregressive Energy Machines
Autoregressive Energy Machines
C. Nash
Conor Durkan
130
57
0
11 Apr 2019
Generalized Variational Inference: Three arguments for deriving new
  Posteriors
Generalized Variational Inference: Three arguments for deriving new Posteriors
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
DRLBDL
492
114
0
03 Apr 2019
From Variational to Deterministic Autoencoders
From Variational to Deterministic Autoencoders
Partha Ghosh
Mehdi S. M. Sajjadi
Antonio Vergari
Michael J. Black
Bernhard Schölkopf
DRL
467
292
0
29 Mar 2019
Information Maximizing Visual Question Generation
Information Maximizing Visual Question Generation
Ranjay Krishna
Michael S. Bernstein
Li Fei-Fei
220
101
0
27 Mar 2019
Approximate Query Processing using Deep Generative Models
Approximate Query Processing using Deep Generative Models
Saravanan Thirumuruganathan
Shohedul Hasan
Nick Koudas
Gautam Das
440
58
0
24 Mar 2019
Generative Adversarial Networks: recent developments
Generative Adversarial Networks: recent developments
M. Zamorski
Adrian Zdobylak
Maciej Ziȩba
J. Swiatek
GAN
144
16
0
16 Mar 2019
Diagnosing and Enhancing VAE Models
Diagnosing and Enhancing VAE Models
Bin Dai
David Wipf
DRL
313
415
0
14 Mar 2019
Variational Bayesian Optimal Experimental Design
Variational Bayesian Optimal Experimental Design
Adam Foster
M. Jankowiak
Eli Bingham
Paul Horsfall
Yee Whye Teh
Tom Rainforth
Noah D. Goodman
268
160
0
13 Mar 2019
Imitation Learning of Factored Multi-agent Reactive Models
Michael Teng
T. Le
Adam Scibior
Frank Wood
DRL
144
1
0
12 Mar 2019
Training Variational Autoencoders with Buffered Stochastic Variational
  Inference
Training Variational Autoencoders with Buffered Stochastic Variational InferenceInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Rui Shu
Hung Bui
Jay Whang
Stefano Ermon
BDL
150
3
0
27 Feb 2019
STCN: Stochastic Temporal Convolutional Networks
STCN: Stochastic Temporal Convolutional Networks
Emre Aksan
Otmar Hilliges
BDL
180
67
0
18 Feb 2019
Gaussian Mean Field Regularizes by Limiting Learned Information
Gaussian Mean Field Regularizes by Limiting Learned InformationEntropy (Entropy), 2019
Julius Kunze
Louis Kirsch
H. Ritter
David Barber
FedMLMLT
157
2
0
12 Feb 2019
A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based
  Learning
A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning
Yoshihiro Nagano
Shoichiro Yamaguchi
Yasuhiro Fujita
Masanori Koyama
BDLDRL
129
15
0
08 Feb 2019
Latent Space Cartography: Generalised Metric-Inspired Measures and
  Measure-Based Transformations for Generative Models
Latent Space Cartography: Generalised Metric-Inspired Measures and Measure-Based Transformations for Generative Models
M. Frenzel
Bogdan Teleaga
Asahi Ushio
99
7
0
06 Feb 2019
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling
Lars Maaløe
Marco Fraccaro
Valentin Liévin
Ole Winther
BDLDRL
335
222
0
06 Feb 2019
Meta-Amortized Variational Inference and Learning
Meta-Amortized Variational Inference and Learning
Mike Wu
Kristy Choi
Noah D. Goodman
Stefano Ermon
OODVLMBDLDRL
189
39
0
05 Feb 2019
Previous
123...111213...151617
Next
Page 12 of 17
Pageof 17