ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.00519
  4. Cited By
Importance Weighted Autoencoders
v1v2v3v4 (latest)

Importance Weighted Autoencoders

International Conference on Learning Representations (ICLR), 2015
1 September 2015
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
    BDL
ArXiv (abs)PDFHTML

Papers citing "Importance Weighted Autoencoders"

50 / 817 papers shown
Approximating Activation Functions
Approximating Activation Functions
Nicholas Gerard Timmons
Andrew Rice
125
17
0
17 Jan 2020
Invertible Generative Modeling using Linear Rational Splines
Invertible Generative Modeling using Linear Rational SplinesInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2020
H. M. Dolatabadi
S. Erfani
C. Leckie
385
67
0
15 Jan 2020
Efficient Debiased Evidence Estimation by Multilevel Monte Carlo
  Sampling
Efficient Debiased Evidence Estimation by Multilevel Monte Carlo Sampling
Kei Ishikawa
T. Goda
144
2
0
14 Jan 2020
AE-OT-GAN: Training GANs from data specific latent distribution
AE-OT-GAN: Training GANs from data specific latent distributionEuropean Conference on Computer Vision (ECCV), 2020
Dongsheng An
Yang Guo
Min Zhang
Xin Qi
Na Lei
S. Yau
X. Gu
DRLGAN
234
25
0
11 Jan 2020
A Neural Dirichlet Process Mixture Model for Task-Free Continual
  Learning
A Neural Dirichlet Process Mixture Model for Task-Free Continual LearningInternational Conference on Learning Representations (ICLR), 2020
Soochan Lee
Junsoo Ha
Dongsu Zhang
Gunhee Kim
BDLCLL
426
233
0
03 Jan 2020
Hierarchical Variational Imitation Learning of Control Programs
Hierarchical Variational Imitation Learning of Control Programs
Roy Fox
Richard Shin
William Paul
Yitian Zou
Basel Alomair
Ken Goldberg
Pieter Abbeel
Ion Stoica
BDL
120
5
0
29 Dec 2019
The Usual Suspects? Reassessing Blame for VAE Posterior Collapse
The Usual Suspects? Reassessing Blame for VAE Posterior CollapseInternational Conference on Machine Learning (ICML), 2019
Bin Dai
Ziyu Wang
David Wipf
DRL
171
85
0
23 Dec 2019
Multilevel Monte Carlo estimation of log marginal likelihood
Multilevel Monte Carlo estimation of log marginal likelihood
T. Goda
Kei Ishikawa
63
3
0
23 Dec 2019
Learning Representations by Maximizing Mutual Information in Variational
  Autoencoders
Learning Representations by Maximizing Mutual Information in Variational AutoencodersInternational Symposium on Information Theory (ISIT), 2019
Ali Lotfi-Rezaabad
S. Vishwanath
DRLSSL
153
43
0
21 Dec 2019
Invertible Gaussian Reparameterization: Revisiting the Gumbel-Softmax
Invertible Gaussian Reparameterization: Revisiting the Gumbel-SoftmaxNeural Information Processing Systems (NeurIPS), 2019
Andres Potapczynski
Gabriel Loaiza-Ganem
John P. Cunningham
279
39
0
19 Dec 2019
Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution
  Detection
Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution Detection
Erik A. Daxberger
José Miguel Hernández-Lobato
UQCV
402
66
0
11 Dec 2019
Neural Networks with Cheap Differential Operators
Neural Networks with Cheap Differential OperatorsNeural Information Processing Systems (NeurIPS), 2019
Ricky T. Q. Chen
David Duvenaud
180
38
0
08 Dec 2019
Stochastic Variational Inference via Upper Bound
Stochastic Variational Inference via Upper Bound
Chunlin Ji
Haige Shen
UQCVBDL
140
12
0
02 Dec 2019
Improving VAE generations of multimodal data through data-dependent
  conditional priors
Improving VAE generations of multimodal data through data-dependent conditional priorsEuropean Conference on Artificial Intelligence (ECAI), 2019
Frantzeska Lavda
Magda Gregorova
Alexandros Kalousis
123
8
0
25 Nov 2019
Mixed-curvature Variational Autoencoders
Mixed-curvature Variational AutoencodersInternational Conference on Learning Representations (ICLR), 2019
Ondrej Skopek
O. Ganea
Gary Bécigneul
CMLDRLBDL
268
112
0
19 Nov 2019
Deep Verifier Networks: Verification of Deep Discriminative Models with
  Deep Generative Models
Deep Verifier Networks: Verification of Deep Discriminative Models with Deep Generative ModelsAAAI Conference on Artificial Intelligence (AAAI), 2019
Tong Che
Xiaofeng Liu
Site Li
Yubin Ge
Ruixiang Zhang
Caiming Xiong
Yoshua Bengio
428
54
0
18 Nov 2019
Rate-Regularization and Generalization in VAEs
Rate-Regularization and Generalization in VAEs
Alican Bozkurt
Babak Esmaeili
Jean-Baptiste Tristan
Dana H. Brooks
Jennifer G. Dy
Jan-Willem van de Meent
DRL
378
8
0
11 Nov 2019
On Posterior Collapse and Encoder Feature Dispersion in Sequence VAEs
On Posterior Collapse and Encoder Feature Dispersion in Sequence VAEs
Teng Long
Yanshuai Cao
Jackie C.K. Cheung
156
7
0
10 Nov 2019
Variational Mixture-of-Experts Autoencoders for Multi-Modal Deep
  Generative Models
Variational Mixture-of-Experts Autoencoders for Multi-Modal Deep Generative ModelsNeural Information Processing Systems (NeurIPS), 2019
Yuge Shi
Siddharth Narayanaswamy
Brooks Paige
Juil Sock
DRL
261
326
0
08 Nov 2019
Amortized Population Gibbs Samplers with Neural Sufficient Statistics
Amortized Population Gibbs Samplers with Neural Sufficient StatisticsInternational Conference on Machine Learning (ICML), 2019
Hao Wu
Heiko Zimmermann
Eli Sennesh
T. Le
Jan-Willem van de Meent
219
7
0
04 Nov 2019
Multiple Futures Prediction
Multiple Futures PredictionNeural Information Processing Systems (NeurIPS), 2019
Yichuan Tang
Ruslan Salakhutdinov
348
368
0
04 Nov 2019
A Unified Stochastic Gradient Approach to Designing Bayesian-Optimal
  Experiments
A Unified Stochastic Gradient Approach to Designing Bayesian-Optimal ExperimentsInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Adam Foster
M. Jankowiak
M. O'Meara
Yee Whye Teh
Tom Rainforth
BDL
212
69
0
01 Nov 2019
Continual Unsupervised Representation Learning
Continual Unsupervised Representation LearningNeural Information Processing Systems (NeurIPS), 2019
Dushyant Rao
Francesco Visin
Andrei A. Rusu
Yee Whye Teh
Razvan Pascanu
R. Hadsell
BDLCLLSSLDRL
146
283
0
31 Oct 2019
Energy-Inspired Models: Learning with Sampler-Induced Distributions
Energy-Inspired Models: Learning with Sampler-Induced DistributionsNeural Information Processing Systems (NeurIPS), 2019
Dieterich Lawson
George Tucker
Bo Dai
Rajesh Ranganath
310
32
0
31 Oct 2019
A Prior of a Googol Gaussians: a Tensor Ring Induced Prior for
  Generative Models
A Prior of a Googol Gaussians: a Tensor Ring Induced Prior for Generative ModelsNeural Information Processing Systems (NeurIPS), 2019
Maksim Kuznetsov
Daniil Polykovskiy
Dmitry Vetrov
Alexander Zhebrak
GAN
95
19
0
29 Oct 2019
Generative Neural Network based Spectrum Sharing using Linear Sum
  Assignment Problems
Generative Neural Network based Spectrum Sharing using Linear Sum Assignment ProblemsChina Communications (CC), 2019
A. B. Zaki
J. Huang
Kaishun Wu
B. Elhalawany
79
16
0
12 Oct 2019
R-SQAIR: Relational Sequential Attend, Infer, Repeat
R-SQAIR: Relational Sequential Attend, Infer, Repeat
Aleksandar Stanić
Jürgen Schmidhuber
182
31
0
11 Oct 2019
Customizing Sequence Generation with Multi-Task Dynamical Systems
Customizing Sequence Generation with Multi-Task Dynamical Systems
Alex Bird
Christopher K. I. Williams
AI4CE
186
11
0
11 Oct 2019
Increasing Expressivity of a Hyperspherical VAE
Increasing Expressivity of a Hyperspherical VAE
Tim R. Davidson
Jakub M. Tomczak
E. Gavves
142
6
0
07 Oct 2019
SCALOR: Generative World Models with Scalable Object Representations
SCALOR: Generative World Models with Scalable Object RepresentationsInternational Conference on Learning Representations (ICLR), 2019
Jindong Jiang
Sepehr Janghorbani
Gerard de Melo
Sungjin Ahn
OCLDRL
439
145
0
06 Oct 2019
Neural Multisensory Scene Inference
Neural Multisensory Scene InferenceNeural Information Processing Systems (NeurIPS), 2019
Jae Hyun Lim
Pedro H. O. Pinheiro
Negar Rostamzadeh
C. Pal
Sungjin Ahn
180
10
0
06 Oct 2019
Latent-Variable Generative Models for Data-Efficient Text Classification
Latent-Variable Generative Models for Data-Efficient Text ClassificationConference on Empirical Methods in Natural Language Processing (EMNLP), 2019
Xiaoan Ding
Kevin Gimpel
180
8
0
01 Oct 2019
Tightening Bounds for Variational Inference by Revisiting Perturbation
  Theory
Tightening Bounds for Variational Inference by Revisiting Perturbation TheoryJournal of Statistical Mechanics: Theory and Experiment (JSTAT), 2019
Kushagra Pandey
Cheng Zhang
Manfred Opper
Stephan Mandt
231
3
0
30 Sep 2019
On the Importance of the Kullback-Leibler Divergence Term in Variational
  Autoencoders for Text Generation
On the Importance of the Kullback-Leibler Divergence Term in Variational Autoencoders for Text GenerationConference on Empirical Methods in Natural Language Processing (EMNLP), 2019
Victor Prokhorov
Ehsan Shareghi
Yingzhen Li
Mohammad Taher Pilehvar
Nigel Collier
DRL
185
33
0
30 Sep 2019
Particle Smoothing Variational Objectives
Particle Smoothing Variational Objectives
A. Moretti
Zizhao Wang
Luhuan Wu
Iddo Drori
I. Pe’er
182
10
0
20 Sep 2019
Select and Attend: Towards Controllable Content Selection in Text
  Generation
Select and Attend: Towards Controllable Content Selection in Text GenerationConference on Empirical Methods in Natural Language Processing (EMNLP), 2019
Xiaoyu Shen
Jun Suzuki
Kentaro Inui
Hui Su
Dietrich Klakow
Satoshi Sekine
167
29
0
10 Sep 2019
Learning Priors for Adversarial Autoencoders
Learning Priors for Adversarial AutoencodersAsia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), 2018
Hui-Po Wang
Wen-Hsiao Peng
Wei-Jan Ko
GAN
75
18
0
10 Sep 2019
Balancing Reconstruction Quality and Regularisation in ELBO for VAEs
Balancing Reconstruction Quality and Regularisation in ELBO for VAEs
Shuyu Lin
Stephen J. Roberts
Niki Trigoni
R. Clark
DRL
125
20
0
09 Sep 2019
FlowSeq: Non-Autoregressive Conditional Sequence Generation with
  Generative Flow
FlowSeq: Non-Autoregressive Conditional Sequence Generation with Generative FlowConference on Empirical Methods in Natural Language Processing (EMNLP), 2019
Xuezhe Ma
Chunting Zhou
Xian Li
Graham Neubig
Eduard H. Hovy
AI4TSBDL
270
200
0
05 Sep 2019
Independent Subspace Analysis for Unsupervised Learning of Disentangled
  Representations
Independent Subspace Analysis for Unsupervised Learning of Disentangled RepresentationsInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Jan Stühmer
Richard Turner
Sebastian Nowozin
DRLBDLCoGe
276
26
0
05 Sep 2019
Improving Disentangled Representation Learning with the Beta Bernoulli
  Process
Improving Disentangled Representation Learning with the Beta Bernoulli ProcessIndustrial Conference on Data Mining (IDM), 2019
P. Gyawali
Zhiyuan Li
Cameron Knight
S. Ghimire
B. Horácek
J. Sapp
Linwei Wang
CMLCoGeDRL
131
13
0
03 Sep 2019
A Surprisingly Effective Fix for Deep Latent Variable Modeling of Text
A Surprisingly Effective Fix for Deep Latent Variable Modeling of TextConference on Empirical Methods in Natural Language Processing (EMNLP), 2019
Bohan Li
Junxian He
Graham Neubig
Taylor Berg-Kirkpatrick
Yiming Yang
DRL
142
73
0
02 Sep 2019
Theory and Evaluation Metrics for Learning Disentangled Representations
Theory and Evaluation Metrics for Learning Disentangled RepresentationsInternational Conference on Learning Representations (ICLR), 2019
Kien Do
T. Tran
CoGeDRL
217
103
0
26 Aug 2019
PixelVAE++: Improved PixelVAE with Discrete Prior
PixelVAE++: Improved PixelVAE with Discrete Prior
Hossein Sadeghi
Evgeny Andriyash
W. Vinci
L. Buffoni
Mohammad H. Amin
BDLDRL
149
33
0
26 Aug 2019
Improve variational autoEncoder with auxiliary softmax multiclassifier
Improve variational autoEncoder with auxiliary softmax multiclassifier
Yao Li
DRL
193
0
0
17 Aug 2019
On importance-weighted autoencoders
On importance-weighted autoencoders
Axel Finke
Alexandre Hoang Thiery
187
2
0
24 Jul 2019
Noise Contrastive Variational Autoencoders
O. Ganea
Yashas Annadani
Gary Bécigneul
DRL
122
0
0
23 Jul 2019
Towards Verified Stochastic Variational Inference for Probabilistic
  Programs
Towards Verified Stochastic Variational Inference for Probabilistic Programs
Wonyeol Lee
Hangyeol Yu
Xavier Rival
Hongseok Yang
307
31
0
20 Jul 2019
The continuous Bernoulli: fixing a pervasive error in variational
  autoencoders
The continuous Bernoulli: fixing a pervasive error in variational autoencodersNeural Information Processing Systems (NeurIPS), 2019
Gabriel Loaiza-Ganem
John P. Cunningham
DRL
339
91
0
16 Jul 2019
Vector Quantized Bayesian Neural Network Inference for Data Streams
Vector Quantized Bayesian Neural Network Inference for Data StreamsAAAI Conference on Artificial Intelligence (AAAI), 2019
Namuk Park
Taekyu Lee
Songkuk Kim
MQ
171
11
0
12 Jul 2019
Previous
123...101112...151617
Next
Page 11 of 17
Pageof 17